Skip to main content
Log in

Effect of molybdenum doping on the electrochromic properties of tungsten oxide thin films by RF magnetron sputtering

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Thin films of pure and molybdenum (Mo)-doped tungsten trioxide (WO3) were deposited on indium tin oxide (ITO)-coated glass and Corning glass substrates by RF magnetron sputtering technique. The effect of Mo doping on the structural, morphological, optical and electrochromic properties of WO3 films was studied systematically. The energy dispersive X-ray analysis (EDAX) revealed that the films consist of molybdenum concentrations from 0 to 2 at.%. X-ray diffraction (XRD) studies indicated that with the increase of Mo concentration the structural phase transformation takes place from polycrystalline to amorphous phase. The crystallite size of the films decreased from 24 to 12 nm with increase of doping concentration of Mo in WO3. Scanning electron microscope (SEM) analysis revealed that Mo dopant led to significant changes in the surface morphology of the films. The electrochemical and electrochromic performance of the pure and Mo-doped WO3 were studied. The WO3 films formed with 1.3 at.% Mo dopant concentration exhibited high optical modulation of 44.3 % and coloration efficiency of 42.5 cm2/C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Granqvist CG (1995) Handbook of inorganic elecrochromic materials. Elsevier, Amsterdam

    Google Scholar 

  2. Cai GF, Zhou D, Xiong QQ, Zhang JH, Wang XL, Gu CD, Tu JP (2013) Sol Energy Mater Sol Cells 117:231

    Article  CAS  Google Scholar 

  3. Noerochim L, Wang JZ, Wexler D, Chao Z, Liu HK (2013) J Power Sources 228:198

    Article  CAS  Google Scholar 

  4. Qin Y, Fan G, Liu K, Hu M (2014) Sensors Actuators B 190:141

    Article  CAS  Google Scholar 

  5. Hari Krishna K, Hussain OM, Julien CM (2010) Appl Phys A Mater Sci Process 99:921

    Article  Google Scholar 

  6. Madhavi V, Kondaiah P, Subba Rayudu S, Hussain OM, Uthanna S (2013) Mater Express 5:135

    Article  Google Scholar 

  7. Zheng H, Ou JZ, Strano MS, Kaner RB, Mitchell A, Kalantar-zadeh K (2011) Adv Funct Mater 21:2175

    Article  CAS  Google Scholar 

  8. Faughnan BW, Crandall RS (1977) Appl Phys Lett 31:834

    Article  CAS  Google Scholar 

  9. Bathe SR, Patil PS (2008) Solid State Ionics 179:314

    Article  CAS  Google Scholar 

  10. Rougier A, Blyr A, Garcia J, Zhang Q, Impey SA (2002) Sol Energy Mater Sol Cells 71:343

    Article  CAS  Google Scholar 

  11. Penin N, Rougier A, Laffont L, Poizot P, Tarascon JM (2006) Sol Energy Mater Sol Cells 90:422

    Article  CAS  Google Scholar 

  12. Kondrachova L, Benjamin PH, Vijayaraghavan G, Williams RD, Stevenson KJ (2006) Langmuir 22:10490

    Article  CAS  Google Scholar 

  13. Gesheva K, Cziraki A, Ivanova T, Szekeres A (2005) Thin Solid Films 492:322

    Article  CAS  Google Scholar 

  14. Rueda de Leon JMO, Acosta DR, Pal U, Castaneda L (2011) Electrochim Acta 56:2599

    Article  Google Scholar 

  15. Kalidindi NR, Manciu FS, Ramana CV (2011) ACS Appl Mater Interfaces 3:863

    Article  CAS  Google Scholar 

  16. Kalidindi NR, Bharathi KK, Ramana CV (2011) Appl Phys Lett 97:142107

    Article  Google Scholar 

  17. Lethy KJ, Beena D, Mahadevan Pillai VP, Ganesan V (2008) J Appl Phys 104:033515

    Article  Google Scholar 

  18. Lethy KJ, Beena D, Mahadevan Pillai VP, Ganesan V (2009) J Phys D Appl Phys 42:85407

    Article  Google Scholar 

  19. Cullity BD (1978) Elements of X-ray diffraction, 2nd edn. Addition-Wesley, Reading, MA

    Google Scholar 

  20. Kovendhan M, Joseph DP, Kumar ES, Sendilkumar A, Manimuthu P, Sambasivam S, Venkateswaran C, Mohan R (2011) Appl Surf Sci 257:8127

    Article  CAS  Google Scholar 

  21. Papadimitropoulos G, Vourdas N, Giannakopoulos K, Vasilopoulou M, Davazoglou D (2011) J Appl Phys 109:103527

    Article  Google Scholar 

  22. Gullapalli SK, Vemuri RS, Ramana CV (2010) Appl Phys Lett 96:171903

    Article  Google Scholar 

  23. Gaury J, Kelder EM, Bychkov E, Biskos G (2013) Thin Solid Films 534:32

    Article  CAS  Google Scholar 

  24. Swanepoel R (1983) J Phys E Sci Instrum 16:1214

    Article  CAS  Google Scholar 

  25. Patil CE, Jadhav PR, Tarwal NL, Deshmukh HP, Karanjar MM, Patil PS (2011) Mater Chem Phys 126:711

    Article  CAS  Google Scholar 

  26. Mahajan SS, Mujawar SH, Shinde PS, Inamder AI, Patil PS (2009) Sol Energy Mater Sol Cells 93:183

    Article  CAS  Google Scholar 

  27. Nicholson RS, Shain I (1964) Anal Chem 36:706

    Article  CAS  Google Scholar 

  28. Chen HS, Jan DJ, Chen CH, Huang KT (2013) Electrochem Acta 93:307

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One of the authors, V. Madhavi, is thankful to the University Grant Commission, India for the award of UGC - RFSMS Junior Research Fellowship to carry out the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Madhavi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madhavi, V., Kumar, P.J., Kondaiah, P. et al. Effect of molybdenum doping on the electrochromic properties of tungsten oxide thin films by RF magnetron sputtering. Ionics 20, 1737–1745 (2014). https://doi.org/10.1007/s11581-014-1073-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-014-1073-8

Keywords

Navigation