Skip to main content
Log in

Understanding the photo-electrochemistry of metal-free di and tri substituted thiophene-based organic dyes in dye-sensitized solar cells using DFT/TD-DFT studies

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this work, two 2, 5-disubstituted and three 2, 3, 5-trisubstituted thiophene-based organic dyes have been investigated using the density functional theory. Although substitution at the 3-position of thiophene ring may retard the back electron transfer, the loss of coplanarity affected the intramolecular charge transfer. The natural bond orbital (NBO) analysis of dye-(TiO2)8 cluster has been performed to study the feasibility of electron injection. The highest driving force of dye regeneration, higher negative NBO value of cyanoacrylic acid (CA) attached to the (TiO2)8 cluster (CA-(TiO2)8 moiety), and reasonably higher open-circuit voltage make (E)-2-cyano-3-(5′-(4-(diphenylamino)phenyl)-[2,2′-bithiophen]-5-yl)acrylic acid (D1) to perform as an effective light harvester in dye-sensitized solar cells. The outcomes of this theoretical study are in good agreement with the experimental data reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ali Tahir A, Ullah H, Sudhagar P, Asri Mat Teridi M, Devadoss A, Sundaram S (2016) The application of graphene and its derivatives to energy conversion, storage, and environmental and biosensing devices. Chem rec 16(3):1591–1634

    Article  CAS  Google Scholar 

  2. O’Regan B, Gratzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346):737–740

  3. Nazeeruddin MK, Pechy P, Renouard T, Zakeeruddin SM, Humphry-Baker R, Comte P et al (2001) Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. J am Chem Soc 123(8):1613–1624

  4. Kuang D, Brillet J, Chen P, Takata M, Uchida S, Miura H et al (2008) Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells. ACS Nano 2(6):1113–1116

  5. Ito S, Rothenberger G, Liska P, Comte P, Zakeeruddin SM, Péchy P et al (2006) High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO2 photoanode. Chem Commun (Cambridge, U K). 38:4004–4006.

  6. Fan X, Chu Z, Wang F, Zhang C, Chen L, Tang Y et al (2008) Wire-shaped flexible dye-sensitized solar cells. Adv Mater (Weinheim, Ger) 20(3):592–595

    Article  CAS  Google Scholar 

  7. Nazeeruddin MK, De Angelis F, Fantacci S, Selloni A, Viscardi G, Liska P et al (2005) Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. J am Chem Soc 127(48):16835–16847

    Article  CAS  Google Scholar 

  8. Chiba Y, Islam A, Watanabe Y, Komiya R, Koide N, Han L (2006) Dye-sensitized solar cells with conversion efficiency of 11.1%. Jpn J Appl Phys 45(7L):L638

    Article  CAS  Google Scholar 

  9. Grätzel M (2004) Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. J Photochem Photobiol a Chem 164(1):3–14

    Article  Google Scholar 

  10. Nazeeruddin MK, Kay A, Rodicio I, Humphry-Baker R, Mueller E, Liska P et al (1993) Conversion of light to electricity by charge-transfer sensitizers on nanocrystalline TiO2 electrodes. J am Chem Soc 115:6382–6390

  11. Nazeeruddin MK, Splivallo R, Liska P, Comte P, Grätzel M (2003) A swift dye uptake procedure for dye sensitized solar cells. Chem Commun (Cambridge, U K) 12:1456–1457.

  12. Nazeeruddin MK, Pechy P, Grätzel M (1997) Efficient panchromatic sensitization of nanocrystalline TiO2 films by a black dye based on a trithiocyanato–ruthenium complex. Chem Commun (Cambridge, U K) 18:1705–1706.

  13. Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Dye-sensitized solar cells. Chem rev 110(11):6595–6663

    Article  CAS  Google Scholar 

  14. Klein C, Nazeeruddin MK, Liska P, Di Censo D, Hirata N, Palomares E et al (2005) Engineering of a novel ruthenium sensitizer and its application in dye-sensitized solar cells for conversion of sunlight into electricity. Inorg Chem 44(2):178–180

    Article  CAS  Google Scholar 

  15. Funaki T, Funakoshi H, Kitao O, Onozawa-Komatsuzaki N, Kasuga K, Sayama K et al (2012) Cyclometalated ruthenium (II) complexes as near-IR sensitizers for high efficiency dye-sensitized solar cells. Angew Chem Int Ed 51(30):7528–7531

    Article  CAS  Google Scholar 

  16. Powar S, Bhargava R, Daeneke T, Götz G, Bäuerle P, Geiger T et al (2015) Thiolate/disulfide based electrolytes for p-type and tandem dye-sensitized solar cells. Electrochim Acta 182:458–463

    Article  CAS  Google Scholar 

  17. Nattestad A, Mozer AJ, Fischer MK, Cheng Y-B, Mishra A, Bäuerle P et al (2010) Highly efficient photocathodes for dye-sensitized tandem solar cells. Nat Mater 9(1):31–35

    Article  CAS  Google Scholar 

  18. Odobel F, Pellegrin Y, Anne FB, Jacquemin D (2014) Molecular engineering of efficient dyes for p-type semiconductor sensitization. In high-efficiency solar cells. Springer International Publishing, Switzerland, Chapter 8, pp. 215–246.

  19. Gibson EA, Smeigh AL, Le Pleux L, Fortage J, Boschloo G, Blart E et al (2009) A p-type NiO-based dye-sensitized solar cell with an open-circuit voltage of 0.35 V. Angew Chem 121(24):4466–4469

    Article  Google Scholar 

  20. Ehret A, Stuhl L, Spitler M (2001) Spectral sensitization of TiO~ 2 nanocrystalline electrodes with aggregated cyanine dyes. J Phys Chem B 105(41):9960–9965

    Article  CAS  Google Scholar 

  21. Chen Y-S, Li C, Zeng Z-H, Wang W-B, Wang X-S, Zhang B-W (2005) Efficient electron injection due to a special adsorbing group’s combination of carboxyl and hydroxyl: dye-sensitized solar cells based on new hemicyanine dyes. J Mater Chem 15(16):1654–1661

    Article  CAS  Google Scholar 

  22. Shibano Y, Umeyama T, Matano Y, Imahori H (2007) Electron-donating perylene tetracarboxylic acids for dye-sensitized solar cells. Org Lett 9(10):1971–1974

    Article  CAS  Google Scholar 

  23. Hara K, Kurashige M, Dan-oh Y, Kasada C, Shinpo A, Suga S et al (2003) Design of new coumarin dyes having thiophene moieties for highly efficient organic-dye-sensitized solar cells. New J Chem 27(5):783–785

    Article  CAS  Google Scholar 

  24. Yella A, Lee H-W, Tsao HN, Yi C, Chandiran AK, Nazeeruddin MK et al (2011) Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency. Science 334(6056):629–634

    Article  CAS  Google Scholar 

  25. Mathew S, Yella A, Gao P, Humphry-Baker R, Curchod BF, Ashari-Astani N et al (2014) Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nature Chem 6(3):242–247

    Article  CAS  Google Scholar 

  26. Horiuchi T, Miura H, Sumioka K, Uchida S (2004) High efficiency of dye-sensitized solar cells based on metal-free indoline dyes. J am Chem Soc 126(39):12218–12219

    Article  CAS  Google Scholar 

  27. Teng C, Yang X, Yuan C, Li C, Chen R, Tian H et al (2009) Two novel carbazole dyes for dye-sensitized solar cells with open-circuit voltages up to 1 V based on Br/Br3 electrolytes. Org Lett 11(23):5542–5545

  28. Mandal S, Kushwaha S, Mukkamala R, Siripina VK, Aidhen IS, Rajakumar B et al (2016) Metal-free bipolar/octupolar organic dyes for DSSC application: a combined experimental and theoretical approach. Org Electron 36:177–184. doi:10.1016/j.orgel.2016.06.009

    Article  CAS  Google Scholar 

  29. Xu W, Peng B, Chen J, Liang M, Cai F (2008) New triphenylamine-based dyes for dye-sensitized solar cells. J Phys Chem C 112(3):874–880

    Article  CAS  Google Scholar 

  30. Li G, Jiang K-J, Li Y-F, Li S-L, Yang L-M (2008) Efficient structural modification of triphenylamine-based organic dyes for dye-sensitized solar cells. J Phys Chem C 112(30):11591–11599

    Article  CAS  Google Scholar 

  31. Misra R, Maragani R, Arora D, Sharma A, Sharma GD (2016) Positional isomers of pyridine linked triphenylamine-based donor-acceptor organic dyes for efficient dye-sensitized solar cells. Dyes Pigments 126:38–45

    Article  CAS  Google Scholar 

  32. Baheti A, Lee C-P, Thomas KJ, Ho K-C (2011) Pyrene-based organic dyes with thiophene containing π-linkers for dye-sensitized solar cells: optical, electrochemical and theoretical investigations. Phys Chem Chem Phys 13(38):17210–17221

    Article  CAS  Google Scholar 

  33. Kim SH, Kim HW, Sakong C, Namgoong J, Park SW, Ko MJ et al (2011) Effect of five-membered heteroaromatic linkers to the performance of phenothiazine-based dye-sensitized solar cells. Org Lett 13(21):5784–5787

    Article  CAS  Google Scholar 

  34. Misra R, Maragani R, Patel K, Sharma G (2014) Synthesis, optical and electrochemical properties of new ferrocenyl substituted triphenylamine based donor–acceptor dyes for dye sensitized solar cells. RSC Adv 4(66):34904–34911

    Article  CAS  Google Scholar 

  35. Maragani R, Misra R, Roy M, Singh MK, Sharma GD (2017) (D–π–A)2–π–D–A type ferrocenyl bisthiazole linked triphenylamine based molecular systems for DSSC: synthesis, experimental and theoretical performance studies. Phys Chem Chem Phys 19:8925–8933

  36. Kakiage K, Aoyama Y, Yano T, Otsuka T, Kyomen T, Unno M et al (2014) An achievement of over 12 percent efficiency in an organic dye-sensitized solar cell. Chem Commun (Cambridge, U K) 50(48):6379–6381

    Article  CAS  Google Scholar 

  37. Zhang M, Wang Y, Xu M, Ma W, Li R, Wang P (2013) Design of high-efficiency organic dyes for titania solar cells based on the chromophoric core of cyclopentadithiophene-benzothiadiazole. Energy Environ Sci 6(10):2944–2949

    Article  CAS  Google Scholar 

  38. Kakiage K, Aoyama Y, Yano T, Oya K, Fujisawa J-I, Hanaya M et al (2015) Chem Commun (Cambridge, U K) 51(88):15894–15897

    Article  CAS  Google Scholar 

  39. Granström M, Petritsch K, Arias A, Lux A, Andersson M, Friend R (1998) Laminated fabrication of polymeric photovoltaic diodes. Nature 395(6699):257–260

    Article  Google Scholar 

  40. Camaioni N, Garlaschelli L, Geri A, Maggini M, Possamai G, Ridolfi G (2002) Solar cells based on poly (3-alkyl) thiophenes and [60] fullerene: a comparative study. J Mater Chem 12(7):2065–2070

    Article  CAS  Google Scholar 

  41. Cremer J, Mena-Osteritz E, Pschierer NG, Müllen K, Bäuerle P (2005) Dye-functionalized head-to-tail coupled oligo (3-hexylthiophenes)—perylene–oligothiophene dyads for photovoltaic applications. Org Biomol Chem 3(6):985–995

    Article  CAS  Google Scholar 

  42. Sivula K, Luscombe CK, Thompson BC, Fréchet JM (2006) Enhancing the thermal stability of polythiophene: fullerene solar cells by decreasing effective polymer regioregularity. J am Chem Soc 128(43):13988–13989

    Article  CAS  Google Scholar 

  43. Fischer MK, Wenger S, Wang M, Mishra A, Zakeeruddin SM, Grätzel M et al (2010) D-π-A sensitizers for dye-sensitized solar cells: linear vs branched oligothiophenes. Chem Mater 22(5):1836–1845

    Article  CAS  Google Scholar 

  44. Miyazaki E, Okanishi T, Suzuki Y, Ishine N, Mori H, Takimiya K et al (2011) Simple oligothiophene-based dyes for dye-sensitized solar cells (DSSCs): anchoring group effects on molecular properties and solar cell performance. Bull Chem Soc Jpn 84(5):459–465

    Article  CAS  Google Scholar 

  45. Feng Q, Zhang Q, Lu X, Wang H, Zhou G, Wang Z-S (2013) Facile and selective synthesis of oligothiophene-based sensitizer isomers: an approach toward efficient dye-sensitized solar cells. ACS Appl Mater Interfaces 5(18):8982–8990

    Article  CAS  Google Scholar 

  46. Hara K, Wang Z-S, Sato T, Furube A, Katoh R, Sugihara H et al (2005) Oligothiophene-containing coumarin dyes for efficient dye-sensitized solar cells. J Phys Chem B 109(32):15476–15482

    Article  CAS  Google Scholar 

  47. Koumura N, Wang Z-S, Mori S, Miyashita M, Suzuki E, Hara K (2006) Alkyl-functionalized organic dyes for efficient molecular photovoltaics. J am Chem Soc 128(44):14256–14257

    Article  CAS  Google Scholar 

  48. Choi H, Lee JK, Song KH, Song K, Kang SO, Ko J (2007) Synthesis of new julolidine dyes having bithiophene derivatives for solar cell. Tetrahedron 63(7):1553–1559

    Article  CAS  Google Scholar 

  49. Kim D, Lee JK, Kang SO, Ko J (2007) Molecular engineering of organic dyes containing N-aryl carbazole moiety for solar cell. Tetrahedron 63(9):1913–1922

    Article  CAS  Google Scholar 

  50. Cheng LT, Tam W, Stevenson SH, Meredith GR, Rikken G, Marder SR (1991) Experimental investigations of organic molecular nonlinear optical polarizabilities. 1. Methods and results on benzene and stilbene derivatives. J Phys Chem 95(26):10631–10643

    Article  CAS  Google Scholar 

  51. Hansch C, Leo A, Taft R (1991) A survey of Hammett substituent constants and resonance and field parameters. Chem rev 91(2):165–195

    Article  CAS  Google Scholar 

  52. Justin Thomas K, Hsu Y-C, Lin JT, Lee K-M, Ho K-C, Lai C-H et al (2008) 2, 3-Disubstituted thiophene-based organic dyes for solar cells. Chem Mater 20(5):1830–1840

    Article  Google Scholar 

  53. Narra VK, Ullah H, Singh VK, Giribabu L, Senthilarasu S, Karazhanov SZ et al (2015) D–π–A system based on zinc porphyrin dyes for dye-sensitized solar cells: combined experimental and DFT–TDDFT study. Polyhedron 100:313–320

    Article  CAS  Google Scholar 

  54. Ullah H, Bibi S, Tahir AA, Mallick TK (2017) Donor-acceptor polymer for the design of all-solid-state dye-sensitized solar cells. J Alloys Compd 696:914–922

    Article  CAS  Google Scholar 

  55. Ullah H (2017) Inter-molecular interaction in Polypyrrole/TiO 2: a DFT study. J Alloys Compd 692:140–148

    Article  CAS  Google Scholar 

  56. Ullah H, Tahir AA, Mallick TK (2017) Polypyrrole/TiO2 composites for the application of photocatalysis. Sensors Actuators B Chem 241:1161–1169

  57. Pople JA, Gill PM, Johnson BG (1992) Kohn—Sham density-functional theory within a finite basis set. Chem Phys Lett 199(6):557–560

    Article  CAS  Google Scholar 

  58. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98(7):5648–5652

    Article  CAS  Google Scholar 

  59. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys rev B 37(2):785

    Article  CAS  Google Scholar 

  60. Mandal S, Ramanujam K (2016) DFT/TD-DFT studies of metal-free N-annulated perylene based organic sensitizers for dye-sensitized solar cells: is thiophene spacer essential for improving the DSSC performance? ChemistrySelect 1(18):5854–5862

    Article  CAS  Google Scholar 

  61. Al-Sehemi AG, Irfan A, Asiri AM, Ammar YA (2012) Synthesis, characterization and DFT study of methoxybenzylidene containing chromophores for DSSC materials. Spectrochim Acta a Mol Biomol Spectrosc 91:239–243

    Article  CAS  Google Scholar 

  62. Sirohi R, Kim DH, Yu S-C, Lee SH (2012) Novel di-anchoring dye for DSSC by bridging of two mono anchoring dye molecules: a conformational approach to reduce aggregation. Dyes Pigments 92(3):1132–1137

    Article  CAS  Google Scholar 

  63. Sun LL, Zhang T, Wang J, Li H, Yan LK, Su ZM (2015) Exploring the influence of electron donating/withdrawing groups on hexamolybdate-based derivatives for efficient p-type dye-sensitized solar cells (DSSCs). RSC Adv 5(50):39821–39827

    Article  CAS  Google Scholar 

  64. Shimogawa H, Endo M, Taniguchi T, Nakaike Y, Kawaraya M, Segawa H et al (2017) D–π–A dyes with an intramolecular B–N coordination bond as a key scaffold for electronic structural tuning and their application in dye-sensitized solar cells. Bull Chem Soc Jpn 90(4):441–450

    Article  CAS  Google Scholar 

  65. Zhang J, Kan Y-H, Li H-B, Geng Y, Wu Y, Su Z-M (2012) How to design proper π-spacer order of the D-π-A dyes for DSSCs? A density functional response. Dyes Pigments 95(2):313–321. doi:10.1016/j.dyepig.2012.05.020

    Article  CAS  Google Scholar 

  66. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange–correlation functional using the coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393(1):51–57

    Article  CAS  Google Scholar 

  67. Cossi M, Rega N, Scalmani G, Barone V (2003) Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J Comput Chem 24(6):669–681

    Article  CAS  Google Scholar 

  68. Takano Y, Houk K (2005) Benchmarking the conductor-like polarizable continuum model (CPCM) for aqueous solvation free energies of neutral and ionic organic molecules. J Chem Theory Comput 1(1):70–77

    Article  Google Scholar 

  69. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR et al. Gaussian 09, Revision B.01. Wallingford CT: Gaussian09W, Revision A02; Gaussian, Inc; 2009.

  70. Delley B (1990) An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys 92(1):508–517

    Article  CAS  Google Scholar 

  71. Delley B (2000) From molecules to solids with the DMol 3 approach. J Chem Phys 113(18):7756–7764

    Article  CAS  Google Scholar 

  72. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys rev Lett 77(18):3865

    Article  CAS  Google Scholar 

  73. Benedek N, Snook I, Latham K, Yarovsky I (2005) Application of numerical basis sets to hydrogen bonded systems: a density functional theory study. J Chem Phys 122(14):144102

    Article  CAS  Google Scholar 

  74. Kusama H, Orita H, Sugihara H (2008) TiO2 band shift by nitrogen-containing heterocycles in dye-sensitized solar cells: a periodic density functional theory study. Langmuir 24(8):4411–4419

  75. Zhang G, Bai Y, Li R, Shi D, Wenger S, Zakeeruddin SM et al (2009) Employ a bisthienothiophene linker to construct an organic chromophore for efficient and stable dye-sensitized solar cells. Energy Environ Sci 2(1):92–95

    Article  CAS  Google Scholar 

  76. Grätzel M (2001) Photoelectrochemical cells. Nature 414(6861):338–344

    Article  Google Scholar 

  77. Preat J, Jacquemin D, Michaux C, Perpète EA (2010) Improvement of the efficiency of thiophene-bridged compounds for dye-sensitized solar cells. Chem Phys 376(1):56–68

    Article  CAS  Google Scholar 

  78. Mehmood U, Hussein IA, Harrabi K, Ahmed S (2015) Density functional theory study on the electronic structures of oxadiazole based dyes as photosensitizer for dye sensitized solar cells. Adv Mater Sci Eng 2015:286730

    Google Scholar 

  79. Nalwa HS (2001) Handbook of advanced electronic and photonic materials and devices: semiconductors. Vol. 1. San Diego, CA, Academic Press.

  80. Wang J, Li H, Ma N-N, Yan L-K, Su Z-M (2013) Theoretical studies on organoimido-substituted hexamolybdates dyes for dye-sensitized solar cells (DSSC). Dyes Pigments 99(2):440–446

    Article  CAS  Google Scholar 

  81. Pearson RG (1988) Absolute electronegativity and hardness: application to inorganic chemistry. Inorg Chem 27(4):734–740. doi:10.1021/ic00277a030

    Article  CAS  Google Scholar 

  82. Scharber MC, Mühlbacher D, Koppe M, Denk P, Waldauf C, Heeger AJ et al (2006) Design rules for donors in bulk-heterojunction solar cells—towards 10% energy-conversion efficiency. Adv Mater (Weinheim, Ger) 18(6):789–794

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The high-performance computer center at IIT Madras is gratefully acknowledged for the computer time and computing facility. We thank Prof. Matsumi and Dr. Raman from JAIST, Japan, for extending the supercomputing facility which pertain to the study of dye-(TiO2)8 interface.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kothandaraman Ramanujam.

Electronic supplementary material

ESM 1

(DOCX 1582 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, S., Rao, S. & Ramanujam, K. Understanding the photo-electrochemistry of metal-free di and tri substituted thiophene-based organic dyes in dye-sensitized solar cells using DFT/TD-DFT studies. Ionics 23, 3545–3554 (2017). https://doi.org/10.1007/s11581-017-2158-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2158-y

Keywords

Navigation