Skip to main content

Advertisement

Log in

An overview of engineered porous material for energy applications: a mini-review

  • Review
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The ordered porous materials, developed using various templating materials, have generated huge interest among the electrochemist community due to their plenty of unique properties and functionalities that can be effectively applied in optoelectronic devices. Mesoporous materials possess excellent opportunities in energy storage and energy conversion applications due to their extraordinarily high surface area and large pore size. These properties may enhance the performance of porous materials in terms of lifetime and stability, energy and power density. In this review, we have tried to club the fields of optoelectronics and mesoporous materials. Also, we have summarised the primary methods for preparing mesoporous materials using various templates and described their applications as electrodes and catalysts in fuel cells, solar fuel production, dye-sensitised solar cells, perovskite, supercapacitors and rechargeable batteries. Finally, we have highlighted the research and development challenges of mesoporous materials those need to be overcome to enhance their contribution in renewable energy applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Scheme 4
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. 2017 http://www.prb.org/Publications/Lesson-Plans/HumanPopulation/PopulationGrowth.aspx. Human population: population growth. United Nations Population Division, World Population Prospects, The 2008 Revision

  2. John B (2009) Human population growth and the demographic transition. Philos Trans R Soc Lond Ser B Biol Sci 364:2985–2990 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2781829

    Article  Google Scholar 

  3. https://en.wikipedia.org/wiki/Industry. Wikipedia. December 2015

  4. https://www.epa.gov/statelocalenergy/state-co-emissions-fossil-fuel-combustion. State CO2 emissions from fossil fuel combustion 1990–2015

  5. https://data.gov.sg/dataset/climate-change-and-energy-carbon-dioxide-emissions-from-combustion-of-fossil-fuels. Climate change and energy—carbon dioxide emissions (from combustion of fossil fuels)

  6. http://www.renewableenergyworld.com/index/tech.html. Renewable energy network for news

  7. https://www.conserve-energy-future.com/types-of-renewable-sources-of-energy.php. Type of renewable energy sources

  8. http://www.ucusa.org. Benefits of renewable energy use. 8 Apr 2013

  9. Nazar LF, Goward G, Leroux F, Duncan M, Huang H, Kerr T, Gaubicher J (2001) Nanostructured materials for energy storage. Int J Inorg Mater 3(3):191–200. https://doi.org/10.1016/S1466-6049(01)00026-5

    Article  CAS  Google Scholar 

  10. Hirscher M (2004) Nanoscale materials for energy storage. Mater Sci Eng B 108(1-2):1. https://doi.org/10.1016/j.mseb.2003.10.028

    Article  CAS  Google Scholar 

  11. Davis ME (2002) Ordered porous materials for emerging applications. Nature 417(6891):813–821. https://doi.org/10.1038/nature00785

    Article  CAS  Google Scholar 

  12. Slater AG, Cooper AI (2015) Science 348. https://doi.org/10.1126/science.aaa8075

  13. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359(6397):710–712. https://doi.org/10.1038/359710a0

    Article  CAS  Google Scholar 

  14. Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL (1992) A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc 114(27):10834–10843. https://doi.org/10.1021/ja00053a020

    Article  CAS  Google Scholar 

  15. Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD (1998) Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J Am Chem Soc 120(24):6024–6036. https://doi.org/10.1021/ja974025i

    Article  CAS  Google Scholar 

  16. Inagaki S, Fukushima Y, Kuroda K (1993) Synthesis of highly ordered mesoporous materials from a layered polysilicate. J Chem Soc Chem Commun:680–682. http://pubs.rsc.org/en/content/articlelanding/1993/c3/c39930000680

  17. Ryoo R, Kim JM, Ko CH, Shin CH (1996) Disordered molecular sieve with branched mesoporous channel network. J Phys Chem 100(45):17718–17721. https://doi.org/10.1021/jp9620835

    Article  CAS  Google Scholar 

  18. Bagshaw SA, Prouzet E, Pinnavaia TJ (1995) Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants. Science 269(5228):1242–1244. https://doi.org/10.1126/science.269.5228.1242

    Article  Google Scholar 

  19. Walcarius A (2013) Mesoporous materials and electrochemistry. Chem Soc Rev 42(9):4098–4140. https://doi.org/10.1039/c2cs35322a

    Article  CAS  Google Scholar 

  20. Linares N, Silvestre-Albero AM, Serrano E, Silvestre-Albero J, Garcia-Martinez J (2014) Mesoporous materials for clean energy technologies. Chem Soc Rev 43(22):7681–7717. https://doi.org/10.1039/C3CS60435G

    Article  CAS  Google Scholar 

  21. Ye Y, Jo C, Jeong J, Lee J (2013) Functional mesoporous materials for energy applications: solar cells, fuel cells, and batteries. Nano 5:4584–4605 https://pubs.rsc.org/en/content/articlelanding/2013/nr/c3nr00176h

    CAS  Google Scholar 

  22. Lee J, Kim J, Hyeon T (2006) Recent progress in the synthesis of porous carbon materials. Adv Mater 18(16):2073–2094. https://doi.org/10.1002/adma.200501576

    Article  CAS  Google Scholar 

  23. Lu Y (2006) Surfactant-templated mesoporous materials: from inorganic to hybrid to organic. Angew Chem Int Ed 45(46):7664–7667. https://doi.org/10.1002/anie.200602489

    Article  CAS  Google Scholar 

  24. Wan Y, Yang H, Zhao D (2006) “Host−guest” chemistry in the synthesis of ordered nonsiliceous mesoporous materials. Acc Chem Res 39(7):423–432. https://doi.org/10.1021/ar050091a

    Article  CAS  Google Scholar 

  25. Wan Y, Shi Y, Zhao D (2007) Designed synthesis of mesoporous solids via nonionic-surfactant-templating approach. Chem Commun 38:897–926 https://pubs.rsc.org/en/content/articlelanding/2007/cc/b610570j

    Article  Google Scholar 

  26. Lu AH, Schuth F (2006) Nanocasting: a versatile strategy for creating nanostructured porous materials. Adv Mater 18(14):1793–1805. https://doi.org/10.1002/adma.200600148

    Article  CAS  Google Scholar 

  27. Xie Y, Kocaefe D, Chen C, Kocaefe Y (2016) J Nanomaterials 2016:2302595 10 pages

    Article  CAS  Google Scholar 

  28. Ray JC, You KS, Ahn JW, Ahna WS (2007) Mesoporous alumina (I): comparison of synthesis schemes using anionic, cationic, and non-ionic surfactants. MicroporousMesoporous Mater 100(1-3):183–190. https://doi.org/10.1016/j.micromeso.2006.10.036

    Article  CAS  Google Scholar 

  29. Kim A, Bruinsma P, Chen Y, Wang LQ, Liu J (1997) Amphoteric surfactant templating route for mesoporous zirconia. Chem Commun:161–162. https://pubs.rsc.org/en/content/articlelanding/1997/cc/a604578b

  30. Zhang ZD, Yan XX, Tian BZ, Yu CZ, Tu B, Zhu GS, Qiu SL, Zhao DY (2006) Synthesis of ordered small pore mesoporous silicates with tailorable pore structures and sizes by polyoxyethylene alkyl amine surfactant. Microporous Mesoporous Mater 90(1-3):23–31. https://doi.org/10.1016/j.micromeso.2005.10.026

    Article  CAS  Google Scholar 

  31. Tan B, Dozier A, Lehmler HJ, Knutson BL, Rankin SE (2004) Elongated silica nanoparticles with a mesh phase mesopore structure by fluorosurfactant templating. Langmuir 20(17):6981–6984. https://doi.org/10.1021/la049474s

    Article  CAS  Google Scholar 

  32. Shen SD, Garcia-Bennett AE, Liu Z, Lu QY, Shi YF, Yan Y, Yu CZ, Liu WC, Cai Y, Terasaki O, Zhao DY (2005) Three-dimensional low symmetry mesoporous silica structures templated from tetra-headgroup rigid bolaform quaternary ammonium surfactant. J Am Chem Soc 127(18):6780–6787. https://doi.org/10.1021/ja0502324

    Article  CAS  Google Scholar 

  33. Wan Y, Shi YF, Zhao DY (2007) Designed synthesis of mesoporous solids via nonionic-surfactanttemplating approach. Chem Commun:897–926. https://pubs.rsc.org/en/content/articlelanding/2007/cc/b610570j

  34. El-Safty SA (2008) Review on the key controls of designer copolymer-silica mesophase monoliths (HOM-type) with large particle morphology, ordered geometry and uniform pore dimension. J Porous Mater 15(4):369–387. https://doi.org/10.1007/s10934-007-9157-8

    Article  CAS  Google Scholar 

  35. Schuth F (2001) Non-siliceous mesostructured and mesoporous materials. Chem Mater 13(10):3184–3195. https://doi.org/10.1021/cm011030j

    Article  CAS  Google Scholar 

  36. Martin CR (1994) Nanomaterials: a membrane-based synthetic approach. Science 266(5193):1961–1972. https://doi.org/10.1126/science.266.5193.1961

    Article  CAS  Google Scholar 

  37. Shi Y, Wan Y, Zhao D (2011) Ordered mesoporous non-oxide materials. Chem Soc Rev 40(7):3854–3878. https://doi.org/10.1039/c0cs00186d

    Article  CAS  Google Scholar 

  38. Zelenski CM, Dorhout PK (1998) Template synthesis of near-monodisperse1microscale nanofibers and nanotubules of MoS2. J Am Chem Soc 120(4):734–742. https://doi.org/10.1021/ja972170q

    Article  CAS  Google Scholar 

  39. Hagfeldt A, Gratzel M (1995) Light-induced redox reactions in nanocrystalline systems. Chem Rev 95(1):49–68. https://doi.org/10.1021/cr00033a003

    Article  CAS  Google Scholar 

  40. Sayama K, Sugihara H, Arakawa H (1998) Photoelectrochemical properties of a porous nb2o5electrode sensitized by a ruthenium dye. Chem Mater 10(12):3825–3832. https://doi.org/10.1021/cm980111l

    Article  CAS  Google Scholar 

  41. Huang Q, Zhou G, Fang G, Fang L, Hu L, Wang ZS (2011) TiO2 nanorod arrays grown from a mixed acid medium for efficient dye-sensitized solar cells. Energy Environ Sci 4(6):2145–2151. https://doi.org/10.1039/c1ee01166a

    Article  CAS  Google Scholar 

  42. Chen HY, Kuang DB, Su CY (2012) Hierarchically micro/nanostructured photoanode materials for dye-sensitized solar cells. J Mater Chem 22(31):15475–15489. https://doi.org/10.1039/c2jm32402d

    Article  CAS  Google Scholar 

  43. Mathew S, Yella A, Gao P, Humphry-Baker R, Curchod BFE, Ashari-Astani N, Tavernelli I, Rothlisberger U, Nazeeruddin MK, Gratzel M (2014) Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat Chem 6(3):242–247. https://doi.org/10.1038/nchem.1861

    Article  CAS  Google Scholar 

  44. Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Dye-Sensitized Solar Cells. Chem Rev 110(11):6595–6663. https://doi.org/10.1021/cr900356p

    Article  CAS  Google Scholar 

  45. Xiong D, Chen W (2012) Recent progress on tandem structured dye-sensitized solar cells. Frontiers of Optoelectronics 5(4):371–389. https://doi.org/10.1007/s12200-012-0283-9

    Article  Google Scholar 

  46. Gratzel M (2009) Recent advances in sensitized mesoscopic solar cells. Acc Chem Res 42(11):1788–1798. https://doi.org/10.1021/ar900141y

    Article  CAS  Google Scholar 

  47. Zhu K, Neale NR, Miedaner A, Frank AJ (2006) Nano Lett 7:69–74

    Article  CAS  Google Scholar 

  48. Nair AS, Peining Z, Babu VJ, Shengyuan Y, Ramakrishna S (2011) Anisotropic TiO2 nanomaterials in dye-sensitized solar cells. Phys Chem Chem Phys 13(48):21248–21261. https://doi.org/10.1039/c1cp23085a

    Article  CAS  Google Scholar 

  49. Poudel P, Qiao Q (2012) One dimensional nanostructure/nanoparticle composites as photoanodes for dyesensitized solar cells. Nano 4:2826–2838 https://pubs.rsc.org/en/content/articlelanding/2012/nr/c2nr30347g

    CAS  Google Scholar 

  50. Roy P, Kim D, Lee K, Spiecker E, Schmuki P (2010) Nano 2:45–59

    CAS  Google Scholar 

  51. Chondroudis K, Mitzi DB (1999) Electroluminescence from an organic−inorganic perovskite incorporating a quaterthiophene dye within lead halide perovskite layers. Chem Mater 11(11):3028–3030. https://doi.org/10.1021/cm990561t

    Article  CAS  Google Scholar 

  52. Mitzi DB (1999) Prog Inorg Chem 48:1–121

    CAS  Google Scholar 

  53. Mitzi DB, Feild CA, Schlesinger Z, Laibowitz RB (1995) Transport, optical, and magnetic properties of the conducting halide perovskite CH3NH3SnI3. J Solid State Chem 114(1):159–163. https://doi.org/10.1006/jssc.1995.1023

    Article  CAS  Google Scholar 

  54. Zhou H, Chen Q, Li G, Luo S, Song TB, Duan HS, Hong Z, You J, Liu Y, Yang Y (2014) Interface engineering of highly efficient perovskite solar cells. Science 345(6196):542–546. https://doi.org/10.1126/science.1254050

    Article  CAS  Google Scholar 

  55. Yin WJ, Yang JH, Kang J, Yan Y, Wei SH (2015) Halide perovskite materials for solar cells: a theoretical review. J Mater Chem A 3(17):8926–8942. https://doi.org/10.1039/C4TA05033A

    Article  CAS  Google Scholar 

  56. Im JH, Lee CR, Lee JW, Park SW, Park NG (2011) 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nano 3:4088–4093

    CAS  Google Scholar 

  57. Kojima A, Ikegami M, Teshima K, Miyasaka T (2012) Highly luminescent lead bromide perovskite nanoparticles synthesized with porous alumina media. Chem Lett 41(4):397–399. https://doi.org/10.1246/cl.2012.397

    Article  CAS  Google Scholar 

  58. Xing G, Mathews N, Sun S, Lim SS, Lam YM, Gratzel M, Mhaisalkar S, Sum TC (2013) Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342(6156):344–347. https://doi.org/10.1126/science.1243167

    Article  CAS  Google Scholar 

  59. Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131(17):6050–6051. https://doi.org/10.1021/ja809598r

    Article  CAS  Google Scholar 

  60. Yang J, Fransishyn KM, Kelly TL (2016) Comparing the effect of mesoporous and planar metal oxides on the stability of methylammonium lead iodide thin films. Chem Mater 28(20):7344–7352. https://doi.org/10.1021/acs.chemmater.6b02744

    Article  CAS  Google Scholar 

  61. Park NG (2016) Crystal growth engineering for high efficiency perovskite solar cells. CrystEngComm 18(32):5977–5985. https://doi.org/10.1039/C6CE00813E

    Article  CAS  Google Scholar 

  62. Zhao Y, Zhu K (2013) Charge transport and recombination in perovskite (CH NH )PbI sensitized TiO solar cells. J Phys Chem Lett 4:2880–2884

    Article  CAS  Google Scholar 

  63. Dhar A, Dey A, Maiti P, Paul PK, Roy S, Paul S, Vekariya RL (2017) Fabrication and characterization of next generation nano-structured organo-lead halide-based perovskite solar cell. Ionics. https://doi.org/10.1007/s11581-017-2256-x

  64. Kim HS, Lee CR, Im JH, Lee KB, Moehl T, Marchioro A, Moon SJ, Humphry-Baker R, Yum JH, Moser JE, Gratzel M, Park NG (2012) Sci Rep 2. doi:https://doi.org/10.1038/srep00591

  65. Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ (2012) Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338(6107):643–647. https://doi.org/10.1126/science.1228604

    Article  CAS  Google Scholar 

  66. Orilall MC, Wiesner U (2011) Block copolymer based composition and morphology control in nanostructured hybrid materials for energy conversion and storage: solar cells, batteries, and fuel cells. Chem Soc Rev 40(2):520–535. https://doi.org/10.1039/C0CS00034E

    Article  CAS  Google Scholar 

  67. Li Q (2016) Nanosci Technol 159–191

  68. Ye GB, Li K, Xiao CA, Chen W, Zhang HN, Pan M (2011) Nafion®-titania nanocomposite proton exchange membranes. J Appl Polym Sci 120(2):1186–1192. https://doi.org/10.1002/app.33031

    Article  CAS  Google Scholar 

  69. Bavykin DV, Carravetta M, Kulak AN, Walsh FC (2010) Application of magic-angle spinning NMR to examine the nature of protons in titanate nanotubes. Chem Mater 22(8):2458–2465. https://doi.org/10.1021/cm903100a

    Article  CAS  Google Scholar 

  70. Morgado E, Jardim PM, Marinkovic BA, Rizzo FC, De Abreu MAS, Zotin JL, Araujo AS (2007) Multistep structural transition of hydrogen trititanate nanotubes into TiO -B nanotubes: a comparison study between nanostructured and bulk materials. Nanotechnology 18(49):495710. https://doi.org/10.1088/0957-4484/18/49/495710

    Article  CAS  Google Scholar 

  71. Li K, Ye GB, Pan JJ, Zhang HN, Pan M (2010) Self-assembled Nafion®/metal oxide nanoparticles hybrid proton exchange membranes. J Membr Sci 347(1-2):26–31. https://doi.org/10.1016/j.memsci.2009.10.002

    Article  CAS  Google Scholar 

  72. Ramani V, Kunz HR, Fenton JM (2005) Stabilized heteropolyacid/Nafion® composite membranes for elevated temperature/low relative humidity PEFC operation. Electrochim Acta 50(5):1181–1187. https://doi.org/10.1016/j.electacta.2004.08.015

    Article  CAS  Google Scholar 

  73. Cele NP, Sinha Ray S, Pillai SK, Ndwandwe M, Nonjola S, Sikhwivhilu L, Mathe MK (2010) Carbon nanotubes based Nafion composite membranes for fuel cell applications. Fuel Cells 10:64–71

    CAS  Google Scholar 

  74. Mauritz K, Moore R (2004) State of understanding of Nafion. Chem Rev 104(10):4535–4586. https://doi.org/10.1021/cr0207123

    Article  CAS  Google Scholar 

  75. Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38(1):253–278. https://doi.org/10.1039/B800489G

    Article  CAS  Google Scholar 

  76. Zou ZG, Ye JH, Sayama K, Arakawa H (2001) Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 414(6864):625–627. https://doi.org/10.1038/414625a

    Article  CAS  Google Scholar 

  77. Ye YS, Rick J, Hwang BJ (2012) Water soluble polymers as proton exchange membranes for fuel cells. Polymers 4(4):913–963. https://doi.org/10.3390/polym4020913

    Article  CAS  Google Scholar 

  78. Gu Y, Wiesner U (2015) Tailoring pore size of graded mesoporous block copolymer membranes: moving from ultrafiltration toward nanofiltration. Macromolecules 48(17):6153–6159. https://doi.org/10.1021/acs.macromol.5b01296

    Article  CAS  Google Scholar 

  79. Mei S, Jin Z (2013) Mesoporous block-copolymer nanospheres prepared by selective swelling. Small 9(2):322–329. https://doi.org/10.1002/smll.201201504

    Article  CAS  Google Scholar 

  80. DeLuca NW, Elabd YA, Polym J (2006) Polymer electrolyte membranes for the direct methanol fuel cell: a review. Sci Part B: Polym Phys 44(16):2201–2225. https://doi.org/10.1002/polb.20861

    Article  CAS  Google Scholar 

  81. Hickner MA, Ghassemi H, Kim YS, Einsla BR, McGrath JE (2004) Alternative polymer systems for proton exchange membranes (PEMs). Chem Rev 104(10):4587–4612. https://doi.org/10.1021/cr020711a

    Article  CAS  Google Scholar 

  82. Komarov PV, Veselov IN, Chu PP, Khalatur PG (2010) Mesoscale simulation of polymer electrolyte membranes based on sulfonated poly(ether ether ketone) and Nafion. Soft Matter 6(16):3939–3956. https://doi.org/10.1039/b921369d

    Article  CAS  Google Scholar 

  83. Darling SB (2007) Directing the self-assembly of block copolymers. Prog Polym Sci 32(10):1152–1204. https://doi.org/10.1016/j.progpolymsci.2007.05.004

    Article  CAS  Google Scholar 

  84. Won J, Park HH, Kim YJ, Choi SW, Ha HY, Oh IH, Kim HS, Kang YS, Ihn KJ (2003) Fixation of nanosized proton transport channels in membranes. Macromolecules 36(9):3228–3234. https://doi.org/10.1021/ma034014b

    Article  CAS  Google Scholar 

  85. Lee HC, Lim H, Su WF, Chao CY (2011) Novel sulfonated block copolymer containing pendant alkylsulfonic acids: syntheses, unique morphologies, and applications in proton exchange membrane. J Polym Sci Part A Polym Chem 49(11):2325–2338. https://doi.org/10.1002/pola.24655

    Article  CAS  Google Scholar 

  86. Ingratta M, Jutemar EP, Jannasch P (2011) Synthesis, nanostructures and properties of sulfonated poly(phenylene oxide) bearing polyfluorostyrene side chains as proton conducting membranes. Macromolecules 44(7):2074–2083. https://doi.org/10.1021/ma102879w

    Article  CAS  Google Scholar 

  87. Mamak M, Coombs N, Ozin GA (2001) Electroactive mesoporous yttria stabilized zirconia containing platinum or nickel oxide nanoclusters: a new class of solid oxide fuel cell electrode materials. Adv Funct Mater 11(1):59–63. https://doi.org/10.1002/1616-3028(200102)11:1<59::AID-ADFM59>3.0.CO;2-F

    Article  CAS  Google Scholar 

  88. Mamak M, Coombs N, Ozin G (2000) Self-assembling solid oxide fuel cell materials: mesoporous yttria-zirconia and metal-yttria-zirconia solid solutions. J Am Chem Soc 122(37):8932–8939. https://doi.org/10.1021/ja0013677

    Article  CAS  Google Scholar 

  89. Hung IM, Hung DT, Fung KZ, Hon MH (2006) Effect of calcination temperature on morphology of mesoporous YSZ. J Eur Ceram Soc 26(13):2627–2632. https://doi.org/10.1016/j.jeurceramsoc.2005.07.069

    Article  CAS  Google Scholar 

  90. Steele BCH (1997) Behaviour of porous cathodes in high temperature fuel cells. Solid State Ionics 94(1-4):239–248. https://doi.org/10.1016/S0167-2738(96)00510-3

    Article  CAS  Google Scholar 

  91. http://www.isuppli.com/semiconductor-value-chain/pages/strong-growth-to-drive-lithium-ion-battery-market-to-61-billion-by-2020.aspx. Accessed 29 Feb 2012

  92. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7(11):845–854. https://doi.org/10.1038/nmat2297

    Article  CAS  Google Scholar 

  93. Largeot C, Portet C, Chmiola J, Taberna P, Gogotsi Y, Simon P (2008) Relation between the ion size and pore size for an electric double-layer capacitor. J Am Chem Soc 130(9):2730–2731. https://doi.org/10.1021/ja7106178

    Article  CAS  Google Scholar 

  94. Wang GP, Zhang L, Zhang JJ (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41(2):797–828. https://doi.org/10.1039/C1CS15060J

    Article  CAS  Google Scholar 

  95. Liu C, Li F, Ma LP, Cheng HM (2010) Advanced materials for energy storage. Adv Mater 22(8):E28–E62. https://doi.org/10.1002/adma.200903328

    Article  CAS  Google Scholar 

  96. Jiang H, Lee PS, Li CZ (2013) 3D carbon based nanostructures for advanced supercapacitors. Energy Environ Sci 6(1):41–53. https://doi.org/10.1039/C2EE23284G

    Article  CAS  Google Scholar 

  97. Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104(10):4245–4269. https://doi.org/10.1021/cr020730k

    Article  CAS  Google Scholar 

  98. Deng Y, Xie Y, Zou K, Ji X (2016) Review on recent advances in nitrogen-doped carbons: preparations and applications in supercapacitors. J Mater Chem A 4(4):1144–1173. https://doi.org/10.1039/C5TA08620E

    Article  CAS  Google Scholar 

  99. Zhai Y, Dou Y, Zhao D, Fulvio PF, Mayes RT, Dai S (2011) Carbon materials for chemical capacitive energy storage. Adv Mater 23(42):4828–4850. https://doi.org/10.1002/adma.201100984

    Article  CAS  Google Scholar 

  100. Brezesinski T, Wang J, Tolbert SH, Dunn B (2011) Next generation pseudocapacitor materials from sol–gel derived transition metal oxides. J Sol-Gel Sci Technol 57(3):330–335. https://doi.org/10.1007/s10971-010-2183-z

    Article  CAS  Google Scholar 

  101. Jiang H, Ma J, Li C (2012) Mesoporous carbon incorporated metal oxide nanomaterials as supercapacitor electrodes. Adv Mater 24(30):4197–4202. https://doi.org/10.1002/adma.201104942

    Article  CAS  Google Scholar 

  102. Upare DP, Yoon S, Lee CW (2011) Nano-structured porous carbon materials for catalysis and energy storage. Korean J Chem Eng 28(3):731–743. https://doi.org/10.1007/s11814-010-0460-8

    Article  CAS  Google Scholar 

  103. Su DS, Schlogl R (2010) Nanostructured carbon and carbon nanocomposites for electrochemical energy storage applications. Chem Sus Chem 3(2):136–168. https://doi.org/10.1002/cssc.200900182

    Article  CAS  Google Scholar 

  104. Dai L, Chang DW, Baek JB, Lu W (2012) Carbon nanomaterials for advanced energy conversion and storage. Small 8(8):1130–1166. https://doi.org/10.1002/smll.201101594

    Article  CAS  Google Scholar 

  105. Ghosh A, Lee YH (2012) Carbon-based electrochemical capacitors. Chem Sus Chem 5(3):480–499. https://doi.org/10.1002/cssc.201100645

    Article  CAS  Google Scholar 

  106. Nishihara H, Kyotani T (2012) Templated nanocarbons for energy storage. Adv Mater 24(33):4473–4498. https://doi.org/10.1002/adma.201201715

    Article  CAS  Google Scholar 

  107. Merlet C, Rotenberg B, Madden PA, Taberna P-L, Simon P, Gogotsi Y, Salanne M (2012) On the molecular origin of supercapacitance in nanoporous carbon electrodes. Nat Mater 11(4):306–310. https://doi.org/10.1038/nmat3260

    Article  CAS  Google Scholar 

  108. Zhou H, Zhu S, Hibino M, Honma I, Power J (2003) Electrochemical capacitance of self-ordered mesoporous carbon. Sour. 122(2):219–223. https://doi.org/10.1016/S0378-7753(03)00439-7

    Article  CAS  Google Scholar 

  109. Vix-Guterl C, Frackowiak E, Jurewicz K, Friebe M, Parmentier J, Beguin F (2005) Electrochemical energy storage in ordered porous carbon materials. Carbon 43(6):1293–1302. https://doi.org/10.1016/j.carbon.2004.12.028

    Article  CAS  Google Scholar 

  110. Xu J, Liu P, Lu Y, Zhao J, Feng J, Song Y, Tang B (2011) Adv Mater Res 1026:239–242

    Google Scholar 

  111. Li H, Wang R, Cao R (2008) Physical and electrochemical characterization of hydrous ruthenium oxide/ordered mesoporous carbon composites as supercapacitor. MicroporousMesoporous Mater 111(1-3):32–38. https://doi.org/10.1016/j.micromeso.2007.07.002

    Article  CAS  Google Scholar 

  112. Feng JC, Zhao JC, Liu P, Tang BH, Xu JL (2010) Preparation and electrochemical characterization of ordered mesoporous carbon/PbO `host-guest composite electrode materials for supercapacitor. J New Mater Electrochem Syst 13:321–326

  113. Zhou Y, Lee CW, Yoon S (2011) Development of an ordered mesoporous carbon/MoO nanocomposite for high performance supercapacitor electrode. Electrochem Solid-State Lett 14(10):A157–A160. https://doi.org/10.1149/1.3614517

    Article  CAS  Google Scholar 

  114. Liu J, Zhang J, Yang Z, Lemmon JP, Imhoff C, Graff GL, Li L, Hu J, Wang C, Xiao J, Xia G, Viswanathan VV, Baskaran S, Sprenkle V, Li X, Shao Y, Schwenzer B (2013) Materials science and materials chemistry for large scale electrochemical energy storage: from transportation to electrical grid. Adv Funct Mater 23(8):929–946. https://doi.org/10.1002/adfm.201200690

    Article  CAS  Google Scholar 

  115. Kim MG, Cho J (2009) Reversible and high-capacity nanostructured electrode materials for Li-ion batteries. Adv Funct Mater 19(10):1497–1514. https://doi.org/10.1002/adfm.200801095

    Article  CAS  Google Scholar 

  116. Hoffmann MR, Choi ST, Martin W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95(1):69–96. https://doi.org/10.1021/cr00033a004

    Article  CAS  Google Scholar 

  117. Gratzel M (2001) Photoelectrochemical cells. Nature 414(6861):338–344. https://doi.org/10.1038/35104607

    Article  CAS  Google Scholar 

  118. Wang CX, Yin LW, Zhang LY, Gao R (2010) Ti/TiO2 nanotube array/Ni composite electrodes for nonenzymatic amperometric glucose sensing. J Phys Chem C 114(10):4408–4413. https://doi.org/10.1021/jp912232p

    Article  CAS  Google Scholar 

  119. Wagemaker M, Kentgens APM, Mulder FM (2002) Equilibrium lithium transport between nanocrystalline phases in intercalated TiO2 anatase. Nature 418(6896):397–399. https://doi.org/10.1038/nature00901

    Article  CAS  Google Scholar 

  120. Bruce PG, Scrosati B, Tarascon JM (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47(16):2930–2946. https://doi.org/10.1002/anie.200702505

    Article  CAS  Google Scholar 

  121. Deng D, Kim MG, Lee JY, Cho J (2009) Green energy storage materials: nanostructured TiO2 and Sn-based anodes for lithium-ion batteries. Energy Environ Sci 2(8):818–837. https://doi.org/10.1039/b823474d

    Article  CAS  Google Scholar 

  122. Lang X, Hirata A, Fujita T, Chen M (2011) Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat Nanotechnol 6(4):232–236. https://doi.org/10.1038/nnano.2011.13

    Article  CAS  Google Scholar 

  123. Salunkhe RR, Kaneti YV, Yamauchi Y (2017) Metal–organic framework-derived nanoporous metal oxides toward supercapacitor applications: progress and prospects. ACS Nano 11(6):5293–5308. https://doi.org/10.1021/acsnano.7b02796

    Article  CAS  Google Scholar 

  124. Salunkhe RR, Kaneti YV, Kim J, Kim JH, Yamauchi Y (2016) Nanoarchitectures for metal–organic framework-derived nanoporous carbons toward supercapacitor applications. Acc Chem Res 49(12):2796–2806. https://doi.org/10.1021/acs.accounts.6b00460

    Article  CAS  Google Scholar 

  125. Salunkhe RR, Young C, Tang J, Takei T, Ide Y, Kobayashi N, Yamauchi Y (2016) A high-performance supercapacitor cell based on ZIF-8-derived nanoporous carbon using an organic electrolyte. Chem Commun 52(26):4764–4767. https://doi.org/10.1039/C6CC00413J

    Article  CAS  Google Scholar 

  126. Wang J, Tang J, Ding B, Malgras V, Chang Z, Hao X, Wang Y, Dou H, Zhang X, Yamauchi Y (2017) Hierarchical porous carbons with layer-by-layer motif architectures from confined soft-template self-assembly in layered materials. Nat Commun 8:15717. https://doi.org/10.1038/ncomms15717

    Article  CAS  Google Scholar 

  127. Ren Y, Hardwick LJ, Bruce PG (2010) Lithium intercalation into mesoporous anatase with an ordered 3D pore structure. Angew Chem Int Ed 49(14):2570–2574. https://doi.org/10.1002/anie.200907099

    Article  CAS  Google Scholar 

  128. Jung HG, Yoon CS, Prakash J, Sun YK (2009) Mesoporous anatase TiO with high surface area and controllable pore size by F−−ion doping: applications for high-power li-ion battery anode. J Phys Chem C 113(50):21258–21263. https://doi.org/10.1021/jp908719k

    Article  CAS  Google Scholar 

  129. Kubiak P, Pfanzelt M, Geserick J, Hormann U, Husing N, Kaiser U, Wohlfahrt-Mehrens M (2009) Electrochemical evaluation of rutile TiO nanoparticles as negative electrode for li-ion batteries. J Power Sour 194(2):1099–1104. https://doi.org/10.1016/j.jpowsour.2009.06.021

    Article  CAS  Google Scholar 

  130. Qiao H, Wang YW, Xiao LF, Zhang LZ (2008) High lithium electroactivity of hierarchical porous rutile TiO nanorod microspheres. Electrochem Commun 10(9):1280–1283. https://doi.org/10.1016/j.elecom.2008.06.024

    Article  CAS  Google Scholar 

  131. Bach U, Lupo D, Comte P, Moser JE, Weissortel F, Salbeck J, Spreitzer H, Gratzel M (1998) Solid-state dye-sensitized mesoporous TiO solar cells with high photon-to-electron conversion efficiencies. Nature 395:583–585 https://www.nature.com/articles/26936

    Article  CAS  Google Scholar 

  132. Tang YF, Yang L, Qiu Z, Huang JS (2009) Template-free synthesis of mesoporous spinel lithium titanate microspheres and their application in high-rate lithium ion batteries. J Mater Chem 19(33):5980–5984. https://doi.org/10.1039/b907480e

    Article  CAS  Google Scholar 

  133. Alvaro M, Aprile C, Benitez M, Carbonell E, Garcia H (2006) Photocatalytic activity of structured mesoporous TiO materials. J Phys Chem B 110(13):6661–6665. https://doi.org/10.1021/jp0573240

    Article  CAS  Google Scholar 

  134. Carbajo MC, Enciso E, Torralvo M (2007) Synthesis and characterisation of macro-mesoporous titania. J Colloids Surf, A 293(1-3):72–79. https://doi.org/10.1016/j.colsurfa.2006.07.009

    Article  CAS  Google Scholar 

  135. Shibata H, Ogura T, Mukai T, Ohkubo T, Sakai H, Abe M (2005) Direct synthesis of mesoporous titania particles having a crystalline wall. J Am Chem Soc 127(47):16396–16397. https://doi.org/10.1021/ja0552601

    Article  CAS  Google Scholar 

  136. Li S, Shen QH, Zong JJ, Yang H (2010) Synthesis of size-tunable mesoporous anatase titania spheres by a template-free method. Mater Res Bull 45(7):882–887. https://doi.org/10.1016/j.materresbull.2010.01.019

    Article  CAS  Google Scholar 

  137. Wang J, Zhou Y, Hu Y, O’Hayre R, Shao Z (2011) Facile synthesis of nanocrystalline TiO mesoporous microspheres for lithium-ion batteries. J Phys Chem C 115(5):2529–2536. https://doi.org/10.1021/jp1087509

    Article  CAS  Google Scholar 

  138. Bao SJ, Bao QL, Li CM, Dong ZL (2007) Novel porous anatase TiO nanorods and their high lithium electroactivity. Electrochem Commun 9(5):1233–1238. https://doi.org/10.1016/j.elecom.2007.01.028

    Article  CAS  Google Scholar 

  139. Krtil P, Fattakhova D, Kavan L, Burnside S, Gratzel M (2000) Lithium insertion into self-organized mesoscopic TiO (anatase) electrodes. Solid State Ionics 135(1–4):101–106. https://doi.org/10.1016/S0167-2738(00)00287-3

    Article  CAS  Google Scholar 

  140. Lindstrom H, Sodergren S, Solbrand A, Rensmo H, Hjelm J, Hagfeldt A, Lindquist SE (1997) Li+ion insertion in TiO (anatase). 2. Voltammetry on nanoporous films. J Phys Chem B 101(39):7717–7722. https://doi.org/10.1021/jp970490q

    Article  Google Scholar 

  141. Armstrong AR, Armstrong G, Canales J, Garcia R, Bruce PG (2005) Lithium-ion intercalation into TiO -B nanowires. Adv Mater 17(7):862–865. https://doi.org/10.1002/adma.200400795

    Article  CAS  Google Scholar 

  142. Wang YF, Wu MY, Zhang WF (2008) Preparation and electrochemical characterization of TiO nanowires as an electrode material for lithium-ion batteries. Electrochim Acta 53(27):7863–7868. https://doi.org/10.1016/j.electacta.2008.05.068

    Article  CAS  Google Scholar 

  143. Li J, Jin YL, Zhang GX, Yang H (2007) Microwave solid-state synthesis of spinel li Ti O nanocrystallites as anode material for lithium-ion batteries. Solid State Ionics 178(29–30):1590–1594. https://doi.org/10.1016/j.ssi.2007.10.012

    Article  CAS  Google Scholar 

  144. Sudant G, Baudrin E, Larcher D, Tarascon JM (2005) Electrochemical lithium reactivity with nanotextured anatase-type TiO. J Mater Chem 15:1263–1269

    CAS  Google Scholar 

  145. Jansen AN, Kahaian AJ, Kepler KD, Nelson PA, Amine K, Dees DW, Vissers DR, Thackeray MM (1999) Development of a high-power lithium-ion battery. J Power Sour 81:902–905

    Article  Google Scholar 

  146. Kavan L, Gratzel M, Rathousky J, Zukalb A (1996) Nanocrystalline TiO (anatase) electrodes: surface morphology, adsorption, and electrochemical properties. J Electrochem Soc 143(2):394–400. https://doi.org/10.1149/1.1836455

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. Rohit L. Vekariya is thankful to Ton Duc Thang University (TDTU-DEMASTED) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohit L. Vekariya.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vekariya, R.L., Dhar, A., Paul, P.K. et al. An overview of engineered porous material for energy applications: a mini-review. Ionics 24, 1–17 (2018). https://doi.org/10.1007/s11581-017-2338-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2338-9

Keywords

Navigation