Skip to main content
Log in

Characterization of PEO/PVP/GO nanocomposite solid polymer electrolyte membranes: microstructural, thermo-mechanical, and conductivity properties

  • Original Papers
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Poly (ethylene oxide) (PEO)/polyvinylpyrrolidone (PVP) blended nanocomposite polymers, incorporating graphene oxide (GO) nano-sheets and embedded with NaIO4 salt, were prepared using solution casting technique. The as-prepared nanocomposite electrolyte membranes were characterized by SEM, TEM, XRD, and Raman vibrational spectroscopic techniques to confirm the dispersion of GO nano-sheets and to understand the synergistic properties of GO/polymer interactions as a function of GO nano-sheets concentration. GO fillers incorporated electrolyte membranes demonstrated distinctive surface morphology composed of circular-shaped protuberances of different dimensions. The decrease of Raman intensity ratio (ID/IG) and in-plane crystallite size (La) values of the nanocomposites suggested the good dispersion and confinement of the GO nano-sheets. The optical properties of blend electrolyte films were studied as a function of GO filler concentration using optical absorption and diffuse reflectance spectra. In reference to PEO/PVP/NaIO4, the resultant PEO/PVP/NaIO4/GO (0.4% in weight) electrolyte membrane demonstrated both an increase in tensile strength of ca. 42% and in Young’s modulus of ca. 40%, improvements coupled with a maximum fractured elongation of 3%. Through impedance spectroscopy analysis, the role of the GO nano-sheets onto the room temperature conductivity properties of the prepared electrolyte membranes has been probed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Scheme 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367

    Article  CAS  PubMed  Google Scholar 

  2. Kim SK, Kim DG, Lee A, Sohn HS, Wie JJ, Nguyen NA, Mackay ME, Lee JC (2012) Organic/inorganic hybrid block copolymer electrolytes with Nanoscale ion-conducting channels for lithium ion batteries. Macromolecules 45:9347–9356

    Article  CAS  Google Scholar 

  3. Li XH, Yu YF, Liu QF, Meng YZ (2012) Synthesis and properties of anion conductive Ionomers containing Tetraphenyl methane moieties. ACS Appl Mater Interfaces 4:3627–3635

    Article  CAS  PubMed  Google Scholar 

  4. Chen HG, Wang SJ, Xiao M, Meng YZ (2007) Novel sulfonated poly(phthalazinone ether ketone) ionomers containing benzonitrile moiety for PEM fuel cell applications. J Power Sources 165:16–23

    Article  CAS  Google Scholar 

  5. Xu K (2014) Electrolytes and interphases in Li-ion batteries and beyond. Chem Rev 114:11503–11618

    Article  CAS  PubMed  Google Scholar 

  6. Yuan M, Erdman J, Tangc C, Ardebili H (2014) High performance solid polymer electrolyte with graphene oxide nanosheets. RSC Adv 4:59637–59642

    Article  CAS  Google Scholar 

  7. Bar N, Basak P, Tsur Y (2017) Vibrational and impedance spectroscopic analyses of semi-interpenetrating polymer networks as solid polymer electrolytes. Physics chemistry. Chem Phys 19:14615–14624

    CAS  Google Scholar 

  8. Stephan AM (2006) Review on gel polymer electrolytes for lithium batteries. Eur Polym J 42:21–42

    Article  Google Scholar 

  9. Bresser D, Oschmann B, Tahir MN, Mueller F, Lieberwirth I, Tremel W, Zentel R, Passerini S (2015) Carbon–coated Anatase TiO2 nanotubes for li- and Na-ion anodes. J Electrochem Soc 162(2):A3013–A3020

    Article  CAS  Google Scholar 

  10. Zheng Q, Ma L, Khurana R, Archer LA, Coates GW (2016) Structure-property study of cross-linked hydrocarbon/poly(ethylene oxide) electrolytes with superior conductivity and dendrite resistance. Chem Sci 7:6832–6838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Spindler R, Shriver DF (1986) Physical and spectroscopic properties of ternary polymer electrolytes composed of poly(vinylpyrrolidinone), polyethylene glycol, and lithium trifluoromethanesulfonate. Macromolecules 19:347–350

    Article  CAS  Google Scholar 

  12. Agrawal RC, Pandey GP (2008) Solid polymer electrolytes:materials designing and all-solid-state battery applications: an overview. J Phys D Appl Phys 41:223001

    Article  Google Scholar 

  13. Scrosati B, Vincent CA (2000) Polymer electrolytes: the key to lithium Polyner batteries. MRS Bull 25:28–30

    Article  CAS  Google Scholar 

  14. Balazs AC, Emrick T, Russell TP (2006) Nanoparticle polymer composites: where two small worlds meet. Science 314:1107–1110

    Article  CAS  PubMed  Google Scholar 

  15. Mackay ME, Tuteja A, Duxbury PM, Hawker CJ, Horn BV, Guan Z, Chen G, Krishnan RS (2006) General strategies for nanoparticle dispersion. Science 311:1740–1743

    Article  CAS  PubMed  Google Scholar 

  16. Warren SC, Disalvo FJ, Wiesner U (2007) Nanoparticle-tuned assembly and disassembly of mesostructured silica hybrids. Nat Mater 6:156–161

    Article  CAS  PubMed  Google Scholar 

  17. Akhtar MS, Kwon S, Stadler FJ, Yang OB (2013) High efficiency solid state dye sensitized solar cells with graphene-polyethylene oxide composite electrolytes. Nano 5:5403–5411

    CAS  Google Scholar 

  18. Moniruzzaman M, Karen IW (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39:5194–5205

    Article  CAS  Google Scholar 

  19. Kotov N A, D’ek’any I and Fendler J H (1996) Ultra graphite oxide-polyelectrolyte composites prepared by self-assembly: transition between conductive and non-conductive states. Adv Mater 8:637–641

    Article  CAS  Google Scholar 

  20. Paci JT, Belytschko T, Schatz GC (2007) Computational studies of the structure, behavior upon heating, and mechanical properties of graphite oxide. Journal of Physics Chemistry C 111:18099–18111

    Article  CAS  Google Scholar 

  21. Corcione CE, Frigione M (2012) Characterization of nanocomposites by thermal analyses. Materials 5:2960–2980

    Article  CAS  PubMed Central  Google Scholar 

  22. Shim J, Kim D, Kim HJ, Lee JH, Baik J, Lee J (2014) Novel composite polymer electrolytes containing poly(ethylene glycol)-grafted graphene oxide for all-solid-state lithium-ion battery applications. J Mater Chem A 2:13873–13883

    Article  CAS  Google Scholar 

  23. Gao S, Zhong J, Xue G, Wang B (2014) Ion conductivity improved polyethylene oxide/lithium perchlorate emembranes modified by graphene oxide. J Membr Sci 470:316–322

    Article  CAS  Google Scholar 

  24. Young W-S, Kuan W–F, Epps TH (2014) Block copolymer electrolytes for rechargeable lithium batteries. J Polym Sci B Polym Phys 52:1–16

    Article  CAS  Google Scholar 

  25. Vignarooban K, Kushagra R, Elango A, Badami P, Mellander B-E, Xu X, Tucker TG, Nam C, Kannan AM (2016) Current trends and future challenges of electrolytes for sodium-ion batteries. Int J Hydrog Energy 41:2829–2846

    Article  CAS  Google Scholar 

  26. Chen J, Huang Z, Wang C, Porter S, Wang B, Lie W, Liu HK (2015) Sodium-difluoro(oxalate) borate (NaDFOB):a new electrolyte alt for Na-ion batteries. Chem Commun 51:9809–9812

    Article  CAS  Google Scholar 

  27. Koduru HK, Marino L, Scarpelli F, Petrov AG, Marinov YG, Hadjichristov GB, Iliev MT, Scaramuzza N (2017) Structural and dielectric properties of NaiO4-complexed PEO/PVPblended solid polymer electrolytes. Curr Appl Phys 17:1518–1531

    Article  Google Scholar 

  28. Zhang SP, Xiong P, Yang XJ, Wang X (2011) Novel PEG functionalized graphene nanosheets: enhancement of dispensability and thermal stability. Nano 3:2169–2174

    CAS  Google Scholar 

  29. Takahashi Y and Tadokoro H (1973) Structural studies of polyethers, -(CH2)m-O-n.X. Crystal structure of poly(ethylene oxide). Macromolecules 6:672–675

  30. Cao Y-C, Xu C, Wu X, Wang X, Xing L, Scott K (2011) A poly(ethylene oxide)/graphene oxide electrolyte membrane for low temperature polymer fuel cells. J Power Sources 196:8377–8382

    Article  CAS  Google Scholar 

  31. Hackett E, Manias E, Giannelis EP (2000) Computer simulation studies of PEO/layer silicate nanocomposites. Chem Mater 12:2161–2167

    Article  CAS  Google Scholar 

  32. Maxfield J, Shepherd IW (1995) Confirmation of poly(ethylene xide) in the solid state, melt and solution measured by Raman scattering. Polymer 16:505–509

    Article  Google Scholar 

  33. Yoshihara T, Tadokro H, Murhashi S (1964) Normal vibrations of the polymer molecules of helical conformation. IV. Polyethylene oxide and polyethylene-d4 oxide. J Chem Phys 41:2902–2911

    Article  CAS  Google Scholar 

  34. Fang M, Wang K, Lu H, Yang Y, Nutt S (2010) Single-layer graphene nanosheets with controlled grafting of polymer chains. J Mater Chem 20:1982–1992

    Article  CAS  Google Scholar 

  35. Zhang X, Wang J, Jia H, Yin B, Ding L, Xu Z, Ji Q (2016) Polyvinyl pyrrolidone modified graphene oxide for improving the mechanical, thermal conductivity and solvent resistance properties of natural rubber. RCS Advances 6:54668–54678

    CAS  Google Scholar 

  36. Pimenta MA, Dresselhaus G, Dresselhaus MS, Cancado LG, Jorio A, Saito R (2007) Studying disorder in graphite-based systems by Raman spectroscopy. Physics chemistry. Chem Phys 9:1276–1291

    CAS  Google Scholar 

  37. Stankovich S, Dikin DA, Piner RD, Kohlhaas k A, Kleinhammes A, Jia Y, Wu Y (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565

    Article  CAS  Google Scholar 

  38. Shen J, Shi M, Yan B, Ma H, Li N, Ye M (2011) Ionic liquid-assisted one-step hydrothermal synthesis of TiO2-reduced graphene oxide composites. Nano Res 4:795 − 806

    Article  Google Scholar 

  39. Hu K, Kulkarni DG, Choi I, Tsukruk VV (2014) Graphene-polymer nanocomposites for structural and functional applications. Prog Polym Sci 39:1934–1972

    Article  CAS  Google Scholar 

  40. Swain AK, Bahadur D (2014) Enhanced stability of reduced Graphene oxide colloid using cross-linking polymers. J Phys Chem C 118:9450–9457

    Article  CAS  Google Scholar 

  41. Cancado L, Takai K, Enoki T, Endo M, Kim Y A, Mizusaki H, Jorio A, Coelho L N, Magalha˜ es-Paniago R and Pimenta M A (2006) General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy. Appl Phys Lett 88: 163106

  42. Chen D, Zou L, Li S, Zheng F (2016) Nanospherical like reduced graphene oxide decorated TiO2 nanoparticles: an advanced catalyst for the hydrogen evolution reaction. Sci Rep 6:20335 (1 – 8)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Davis PW, Shalliday TS (1960) Some optical properties of cadmium telluride. Phys Rev 118:1020–1022

    Article  CAS  Google Scholar 

  44. Thutupalli GKM, Tomlin SG (1976) The optical properties of thin films of cadmium and zinc selenides and tellurides. J Phys D Appl Phys 9:1639–1646

    Article  CAS  Google Scholar 

  45. Al-Ramadin Y (2000) Optical properties of poly(vinyl chloride)/poly(ethylene oxide). Opt Mater 14:287–290

    Article  CAS  Google Scholar 

  46. Saunderson JL (1942) Calculation of the color of pigmented plastics. Journal of Optical Society of America 32:727–736

    Article  Google Scholar 

  47. Mudgett PS, Richards LW (1973) Kubella-Munk scattering and absorption coefficients for use with glossy, opaque objects. Journal of Painting Technology 45:44–53

    Google Scholar 

  48. Wen-Dar HO, Chen-Chi MMA, Lieh-Chun WU (1998) Diffuse reflectance and transmittance of IR absorbing polymer film. Polym Eng Sci 38:1666–1674

    Article  Google Scholar 

  49. Bandara TMWJ, Mellander B-E, Albinsson I, Dissanayake MAKL, Pitawala HMJC (2009) Thermal and dielectric properties of PEO/EC/Pr4N+I- polymer electrolytes for possible applications in photo-electro chemical solar cells. J Solid State Electrochemistry 13:1227–1232

    Article  CAS  Google Scholar 

  50. Cheng HKF, Sahoo NG, Tan YP, Pan YZ, Bao HQ, Li L, Chan SH, Zhao JH (2012) Poly(vinyl alcohol) nanocomposites filled with poly(vinyl alcohol)-grafted graphene oxide. ACS Appl Mater Interfaces 4:2387–2394

    Article  CAS  PubMed  Google Scholar 

  51. Stephan AM, Saito Y, Muniyandi N, Renganathan NG, Kalyanasundaram S, Elizabeth RN (2002) Preparation and characterization of PVC/PMMA blend polymer electrolytes complexed with LiN(CF3SO2)2. Solid State Ionics 148:467–473

    Article  Google Scholar 

  52. Niu Y, Fang Q, Zhang X, Zhang P, Li Y (2016) Reduction and structural evolution of graphene oxide sheets under hydrothermal treatment. Phys Lett A 380:3128–3132

    Article  CAS  Google Scholar 

  53. Noor SAM, Ahmad A, Talib IA, Rahman MYA (2010) Morphology, chemical interaction, and conductivity of a PEO-ENR50 based on solid polymer electrolyte. Ionics 16:161–170

    Article  CAS  Google Scholar 

  54. Cassagneau T, Fendler JH (1998) High density rechargeable lithium-ion batteries self-assembled from graphite oxide nanoplatelets and polyelectrolytes. Adv Mater 10:877–881

    Article  CAS  Google Scholar 

  55. Wang W and Alexandridis P (2016) Composite polymer electrolytes: nanoparticles affect structure and properties. Polymers 8(11):387 (1-36)

    Article  PubMed Central  Google Scholar 

  56. Klongkan S, Pumchusak J (2015) Effects of the addition of LiCF3SO3 salt on the conductivity, thermal and mechanical properties of PEO-LiCF3SO3 solid polymer electrolyte. International Journal of Chemical Engineering and Applications 6:165–168

    Article  CAS  Google Scholar 

  57. Ji J, Li B, Zhong W-H (2010) Simultaneous enhancing ionic conductivity and mechanical properties of solid polymer electrolytes via a copolymer multi-functional filler. Electrochemica Acta 55:9075–9082

    Article  CAS  Google Scholar 

  58. Tian Y, Cao Y, Wang Yu YW, Feng J (2013) Realizing ultra modulus and high strength of macroscopic graphene oxide papers through crosslinking of mussel-inspired polymers. Adv Mater 25:2980–2983

    Article  CAS  PubMed  Google Scholar 

  59. Cheng Q, Wu M, Li M, Jiang I, Tang Z (2013) Ultratough artificial nacre based on conjugated cross-linked graphene oxide. Angew Chem Int Ed 52:3750–3755

    Article  CAS  Google Scholar 

  60. Kim SK, Miyayama M, Yanagida H (1995) Electrical anisotropy and a plausible explanation for dielectric anomaly of Bi4Ti3O12 single. Mater Res Bull 31:121–131

    Article  Google Scholar 

  61. Nguyen CA, Xiong S, Ma J, Lu X, Lee PS (2011) High ionic conductivity P(VDF-TrFE)/PEO blended polymer electrolytes for solid electrochromic devices. Phys Chem Chem Phys 13:13319–13326

    Article  CAS  PubMed  Google Scholar 

  62. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges the INERA EU project Research Potential “Research and Innovation Capacity Strengthening of ISSP-BAS in Multifunctional Nanostructures” (FP7 REGPOT-2012-2013-1) support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. K. Koduru.

Ethics declarations

Conflict of interest

We confirm that this manuscript has not been published elsewhere and is not under consideration by another journal and we have no conflicts of interest to disclose.

Electronic supplementary material

ESM 1

(DOC 2068 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koduru, H.K., Scarpelli, F., Marinov, Y.G. et al. Characterization of PEO/PVP/GO nanocomposite solid polymer electrolyte membranes: microstructural, thermo-mechanical, and conductivity properties. Ionics 24, 3459–3473 (2018). https://doi.org/10.1007/s11581-018-2484-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2484-8

Keywords

Navigation