Skip to main content
Log in

An investigation on the abnormal trend of the conductivity properties of CMC/PVA-doped NH4Cl-based solid biopolymer electrolyte system

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The present work was carried out to investigate the abnormal trend of electrochemical properties of solid biopolymer electrolytes (SBEs) system-based carboxymethyl cellulose (CMC) blended with polyvinyl alcohol (PVA)-doped NH4Cl. The SBEs system was prepared via solution casting technique and analyzed through Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), X-ray diffraction (XRD) analysis, and electrical impedance spectroscopy (EIS). Complexation was observed with the changes of peaks at 1065 cm−1, 1598 cm−1, 2912 cm−1, and 3396 cm−1 that corresponds to C–O–C, C=O of COO stretching, C–H stretching, and O–H stretching, respectively, of CMC/PVA blend system upon the addition of NH4Cl. The decrease of the amorphousness and the increase of weight loss demonstrated the abnormal observation of the ionic conductivity when (1–5 wt%) NH4Cl was added in the SBEs system which was lower than the un-doped SBEs system. It was also observed that the highest ionic conductivity at 8.86 × 10−5 Scm−1 was achieved by the sample containing 6 wt% of NH4Cl. The temperature dependence of the SBEs system is found to be governed by the Arrhenius rule. Through the IR deconvolution technique, the conductivity of CMC/PVA-NH4Cl SBEs system was shown to be primarily influenced by the ionic mobility and diffusion coefficient of the ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Singh R, Polu AR, Bhattacharya B, Rhee HW, Varlikli C, Singh PK (2016) Perspectives for solid biopolymer electrolytes in dye sensitized solar cell and battery application. Renew Sust Energ Rev 65:1098–1117

    Article  CAS  Google Scholar 

  2. Rani MSA, Rudhziah S, Ahmad A, Mohamed NS (2014) Biopolymer electrolyte based on derivatives of cellulose from kenaf bast fiber. Polym 6:2371–2385

    Article  Google Scholar 

  3. Ning W, Xingxiang Z, Haihui L, Benqiao H (2009) 1-Allyl-3-methylimidazolium chloride plasticized-corn starch as solid biopolymer electrolytes. Carbohydr Polym 76:482–484

    Article  Google Scholar 

  4. Ramlli MA, Kamarudin KH, Isa MIN (2015) Ionic conductivity and structural analysis of carboxymethyl cellulose doped with ammonium fluoride as solid biopolymer electrolytes. Am-Eurasian J Sustain Agric 9:46–52

    Google Scholar 

  5. Zhang J, Huang X, Fu J, Huang Y, Liu W, Tang X (2010) Novel PEO-based composite solid polymer electrolytes incorporated with active inorganic–organic hybrid polyphosphazene microspheres. Mater Chem Phys 121:511–518

    Article  CAS  Google Scholar 

  6. Shukur MF, Kadir MFZ (2015) Hydrogen ion conducting starch-chitosan blend based electrolyte for application in electrochemical devices. Electrochim Acta 158:152–165

    Article  CAS  Google Scholar 

  7. Noor NAM, Isa MIN (2016) Ionic conductivity and dielectric properties of CMC doped NH4SCN solid biopolymer electrolytes. Adv Mater 1107:230–235

    Google Scholar 

  8. Wang J, Song S, Muchakayala R, Hu X, Liu R (2017) Structural, electrical, and electrochemical properties of PVA-based biodegradable gel polymer electrolyte membranes for Mg-ion battery applications. Ionics 23:1759–1769

    Article  CAS  Google Scholar 

  9. Sarangika HNM, Dissanayake MAKL, Senadeera GKR, Rathnayake RRDV, Pitawala HMJC (2017) Polyethylene oxide and ionic liquid-based solid polymer electrolyte for rechargeable magnesium batteries. Ionics 23:2829–2835

    Article  CAS  Google Scholar 

  10. Liu J, Wu X, He J, Li J, Lai Y (2017) Preparation and performance of a novel gel polymer electrolyte based on poly (vinylidene fluoride)/graphene separator for lithium ion battery. Electrochim Acta 235:500–507

    Article  CAS  Google Scholar 

  11. Ahmad NH, Isa MIN (2016) Ionic conductivity and electrical properties of carboxymethyl cellulose-NH4Cl solid polymer electrolytes. JESTEC 11:839–847

    Google Scholar 

  12. Samsudin AS, Isa MIN, Mohamad N (2011) New types of biopolymer electrolytes: ionic conductivity study on CMC doped with NH4Br. Int J Curr Eng Sci Res 1:7–11

    Google Scholar 

  13. Khiar ASA, Arof AK (2011) Electrical properties of starch/chitosan-NH4NO3 polymer electrolyte. WASET 59:23–27

    Google Scholar 

  14. Basavaraja C, Kim WJ, Kim DG (2011) Synthesis and characterization of soluble polypyrrole–poly (ɛ-caprolactone) polymer blends with improved electrical conductivities. Mater Chem Phys 129:787–793

    Article  CAS  Google Scholar 

  15. Ahmad NH, Isa MIN (2016) Characterization of un-plasticized and propylene carbonate plasticized carboxymethyl cellulose doped ammonium chloride solid biopolymer electrolytes. Carbohydr Polym 137:426–432

    Article  CAS  Google Scholar 

  16. Shukur MF, Ithnin R, Kadir MFZ (2014) Electrical properties of proton conducting solid biopolymer electrolytes based on starch–chitosan blend. Ionics 20:977–999

    Article  CAS  Google Scholar 

  17. Tamilarasan P, Ramaprabhu S (2014) Stretchable supercapacitors based on highly stretchable ionic liquid incorporated polymer electrolyte. Mater Chem Phys 148:48–56

    Article  CAS  Google Scholar 

  18. Ghanbarzadeh B, Almasi H, Entezami AA (2011) Improving the barrier and mechanical properties of corn starch-based edible films: effect of citric acid and carboxymethyl cellulose. Ind Crop Prod 33:229–235

    Article  CAS  Google Scholar 

  19. Rasali NMJ, Samsudin AS (2017) Ionic transport properties of protonic conducting solid biopolymer electrolytes based on enhanced carboxymethyl cellulose-NH4Br with glycerol. Ionics 1:1–12

    Google Scholar 

  20. Kamarudin KH, Isa MIN (2013) Structural and DC ionic conductivity studies of carboxy methylcellulose doped with ammonium nitrate as solid polymer electrolytes. Int J Phys Sci 8:1581–1587

    CAS  Google Scholar 

  21. Yusuf SNF, Azzahari AD, Yahya R, Majid SR, Careem MA, Arof AK (2016) From crab shell to solar cell: a gel polymer electrolyte based on N-phthaloylchitosan and its application in dye-sensitized solar cells. RSC Adv 6:27714–27724

    Article  CAS  Google Scholar 

  22. Yang CC, Lin SJ, Wu GM (2005) Study of ionic transport properties of alkaline poly (vinyl) alcohol-based polymer electrolytes. Mater Chen Phys 92:251–255

    Article  CAS  Google Scholar 

  23. Sinha S, Chatterjee SK, Ghosh J, Meikap AK (2014) Dielectric relaxation and ac conductivity behaviour of polyvinyl alcohol–HgSe quantum dot hybrid films. J Phys D Appl Phys 47:275301

    Article  Google Scholar 

  24. El-Gamal S, El Sayed AM, Abdel-Hady E (2017) Effect of cobalt oxide nanoparticles on the nano-scale free volume and optical properties of biodegradable CMC/PVA films. J Polym Environ 1:1–10

    Google Scholar 

  25. Wei QB, Fu F, Zhang YQ, Wang Q, Ren YX (2014) pH-responsive CMC/PAM/PVP semi-IPN hydrogels for theophylline drug release. J Polym Res 21:453

    Article  Google Scholar 

  26. Ahmad NH, Isa MIN (2015) Conduction mechanism of solid biopolymer electrolytes system based on carboxymethyl cellulose--ammonium chloride. Am Eurasian J Sustain Agric 9:1–8

    Google Scholar 

  27. Saadiah MA, Samsudin AS (2018) Electrical study on carboxymethyl cellulose-polyvinyl alcohol based bio-polymer blend electrolytes. In IOP Conference Series: Mater Sci and Eng. 342:012045

  28. Samsudin AS, Lai HM, Isa MIN (2014) Biopolymer materials based carboxymethyl cellulose as a proton conducting biopolymer electrolyte for application in rechargeable proton battery. Electrochim Acta 129:1–13

    Article  CAS  Google Scholar 

  29. Dai H, Huang Y, Huang H (2017) Eco-friendly polyvinyl alcohol/carboxymethyl cellulose hydrogels reinforced with graphene oxide and bentonite for enhanced adsorption of methylene blue. Carbohydr Polym 185:1–11

    Article  Google Scholar 

  30. Dai H, Huang H (2017) Enhanced swelling and responsive properties of pineapple peel carboxymethyl cellulose-g-poly (acrylic acid-co-acrylamide) superabsorbent hydrogel by the introduction of carclazyte. J Agric Food Chem 65:565–574

    Article  CAS  Google Scholar 

  31. Ahmad NH, Isa MIN (2015) Structural and ionic conductivity studies of CMC based polymerelectrolyte doped with NH4Cl. Adv Mater Res 1107:247–252

    Article  Google Scholar 

  32. Hema M, Selvasekerapandian S, Sakunthala A, Arunkumar D, Nithya H (2008) Structural, vibrational and electrical characterization of PVA–NH4Br polymer electrolyte system. Phys B Condens Matter 403:2740–2747

    Article  CAS  Google Scholar 

  33. Kadir MFZ, Aspanut Z, Majid SR, Arof AK (2011) FTIR studies of plasticized poly (vinyl alcohol)–chitosan blend doped with NH4NO3 polymer electrolyte membrane. Spectrochim Acta A Mol Biomol Spectrosc 78:1068–1074

    Article  CAS  Google Scholar 

  34. Park JC, Ito T, Kim KO, Kim KW, Kim BS, Khil MS, Kim IS (2010) Electrospun poly (vinyl alcohol) nanofibers: effects of degree of hydrolysis and enhanced water stability. Polym J 42:273–276

    Article  CAS  Google Scholar 

  35. Rajendran S, Sivakumar M, Subadevi R (2003) Effect of salt concentration in poly (vinyl alcohol)-based solid polymer electrolytes. J Power Sources 124:225–230

    Article  CAS  Google Scholar 

  36. Liu X, Yu L, Liu H, Chen L, Li L (2008) In situ thermal decomposition of starch with constant moisture in a sealed system. Polym Degrad Stab 93:260–262

    Article  CAS  Google Scholar 

  37. Mohamad AA, Arof AK (2007) Plasticized alkaline solid polymer electrolyte system. Mater Lett 61:3096–3099

    Article  CAS  Google Scholar 

  38. Ramesh S, Arof AK (2001) Structural, thermal and electrochemical cell characteristics of poly (vinyl chloride)-based polymer electrolytes. J Power Sources 99:41–47

    Article  CAS  Google Scholar 

  39. Ma XH, Xu ZL, Liu Y, Sun D (2010) Preparation and characterization of PFSA–PVA–SiO2/PVA/PAN difunctional hollow fiber composite membranes. J Membr Sci 360:315–322

    Article  CAS  Google Scholar 

  40. Du F, Fischer JE, Winey KI (2003) Coagulation method for preparing single-walled carbon nanotube/poly (methyl methacrylate) composites and their modulus, electrical conductivity, and thermal stability. J Polym Sci B Polym Phys 41:3333–3338

    Article  CAS  Google Scholar 

  41. Lewandowska K (2009) Miscibility and thermal stability of poly (vinyl alcohol)/chitosan mixtures. Thermochim Acta 493:42–48

    Article  CAS  Google Scholar 

  42. Anjali T (2012) Modification of carboxymethyl cellulose through oxidation. Carbohydr Polym 87:457–460

    Article  CAS  Google Scholar 

  43. Biswal DR, Singh RP (2004) Characterisation of carboxymethyl cellulose and polyacrylamide graft copolymer. Carbohydr Polym 57:379–387

    Article  CAS  Google Scholar 

  44. Liew CW, Ramesh S, Arof AK (2014) A novel approach on ionic liquid-based poly (vinyl alcohol) proton conductive polymer electrolytes for fuel cell applications. Int J Hydrog Energy 39:2917–2928

    Article  CAS  Google Scholar 

  45. Yang JM, Chiang CY, Wang HZ, Yang CC (2009) Two step modification of poly (vinyl alcohol) by UV radiation with 2-hydroxy ethyl methacrylate and sol–gel process for the application of polymer electrolyte membrane. J Membr Sci 341:186–194

    Article  CAS  Google Scholar 

  46. Hirankumar G, Selvasekarapandian S, Bhuvaneswari MS, Baskaran R, Vijayakumar M (2004) AC impedance studies on proton conducting polymer electrolyte complexes (PVA+ CH3COONH4). Ionics 10:135–138

    Article  CAS  Google Scholar 

  47. Sivadevi S, Selvasekarapandian S, Karthikeyan S, Sanjeeviraja C, Nithya H, Iwai Y, Kawamura J (2015) Proton-conducting polymer electrolyte based on PVA-PAN blend doped with ammonium thiocyanate. Ionics 21:1017–1029

    Article  CAS  Google Scholar 

  48. Vöge A, Deimede V, Paloukis F, Neophytides SG, Kallitsis JK (2014) Synthesis and properties of aromatic polyethers containing poly (ethylene oxide) side chains as polymer electrolytes for lithium ion batteries. Mater Chem Phys 148:57–66

    Article  Google Scholar 

  49. Shukur MF, Ithnin R, Kadir MFZ (2014) Electrical characterization of corn starch-LiOAc electrolytes and application in electrochemical double layer capacitor. Electrochim Acta 136:204–216

    Article  CAS  Google Scholar 

  50. Yadav I, Nayak SK, Rathnam VS, Banerjee I, Ray SS, Anis A, Pal K (2018) Reinforcing effect of graphene oxide reinforcement on the properties of poly (vinyl alcohol) and carboxymethyl tamarind gum based phase-separated film. J Mech Behav Biomed Mater 81:61–71

    Article  CAS  Google Scholar 

  51. Kadir MFZ, Majid SR, Arof AK (2010) Plasticized chitosan–PVA blend polymer electrolyte based proton battery. Electrochim Acta 55:1475–1482

    Article  CAS  Google Scholar 

  52. Aji MP, Masturi, Bijaksana S, Khairurrijal, Abdullah M (2012) A general formula for ion concentration dependent electrical conductivities in polymer electrolytes. Am J Appl Sci 9:946–954

    Article  CAS  Google Scholar 

  53. Mahakul PC, Sa K, Das B, Mahanandia P (2017) Structural investigation of the enhanced electrical, optical and electrochemical properties of MWCNT incorporated poly [3-hexylthiophene-2, 5-diyl] composites. Mater Chem Phys 199:477–484

    Article  CAS  Google Scholar 

  54. Rasali NMJ, Nagao Y, Samsudin AS (2018) Enhancement on amorphous phase in solid biopolymer electrolyte based alginate doped NH4NO3. Ionics 1:1–14

    Google Scholar 

  55. Liew CW, Ramesh S (2015) Electrical, structural, thermal and electrochemical properties of corn starch-based biopolymer electrolytes. Carbohydr Polym 124:22–228

    Article  Google Scholar 

  56. Middleton JC, Tipton AJ (2000) Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21:2335–2346

    Article  CAS  Google Scholar 

  57. Ibrahim S, Johan MR (2012) Thermolysis and conductivity studies of poly (ethylene oxide)(PEO) based polymer electrolytes doped with carbon nanotube. Int J Electrochem Sci 7:2596–2615

    CAS  Google Scholar 

  58. Kim JY, Oh MW, Lee S, Cho YC, Yoon JH, Lee GW, Jeong SY (2014) Abnormal drop in electrical resistivity with impurity doping of single-crystal Ag. Sci Rep 4:5450

    Article  CAS  Google Scholar 

  59. Zhang H, Liu C, Zheng L, Feng W, Zhou Z, Nie J (2015) Solid polymer electrolyte comprised of lithium salt/ether functionalized ammonium-based polymeric ionic liquid with bis (fluorosulfonyl) imide. Electrochim Acta 159:93–101

    Article  Google Scholar 

  60. Sit YK, Samsudin AS, Isa MIN (2012) Ionic conductivity study on hydroxyethyl cellulose (HEC) doped with NH4Br based biopolymer electrolytes. Res J Recent Sci 1:16–21

    CAS  Google Scholar 

  61. Samsudin AS, Isa MIN (2012) Structural and ionic transport study on CMC doped NH4Br: a new types of biopolymer electrolytes. J Appl Sci 12:174–179

    Article  CAS  Google Scholar 

  62. Ulaganathan M, Pethaiah SS, Rajendran S (2011) Li-ion conduction in PVAc based polymer blend electrolytes for lithium battery applications. Mater Chem Phys 129:471–476

    Article  CAS  Google Scholar 

  63. Ravi M, Pavani Y, Kumar KK, Bhavani S, Sharma AK, Rao VN (2011) Studies on electrical and dielectric properties of PVP: KBrO4 complexed polymer electrolyte films. Mater Chem Phys 130:442–448

    Article  CAS  Google Scholar 

  64. Ahmad NH, Isa MIN (2015) Proton conducting solid polymer electrolytes based carboxymethyl cellulose doped ammonium chloride: ionic conductivity and transport studies. Int J Plast Technol 19:47–55

    Article  CAS  Google Scholar 

  65. Kesharwani P, Sahu DK, Mahipal YK, Agrawal RC (2017) Conductivity enhancement in K+−ion conducting dry solid polymer electrolyte (SPE):[PEO: KNO3]: a consequence of KI dispersal and nano-ionic effect. Mater Chem Phys 193:524–531

    Article  CAS  Google Scholar 

  66. Latif F, Aziz M, Katun N, Yahya MZ (2006) The role and impact of rubber in poly (methyl methacrylate)/lithium triflate electrolyte. J Power Sources 159:1401–1404

    Article  CAS  Google Scholar 

  67. Sekhar PC, Kumar PN, Sasikala U, Rao VVRN, Sharma AK (2012) Investigations on lithium ion complexed polyvinyl chloride (PVC) solid polymer electrolyte films. IRACST-Eng Sci Technol Int J (ESTIJ) 2:908–912

    Google Scholar 

  68. Jayakrishnan P, Ramesan M (2017) Studies on the effect of magnetite nanoparticles on magnetic, mechanical, thermal, temperature dependent electrical resistivity and DC conductivity modeling of poly (vinyl alcohol-co-acrylic acid)/Fe3O4 nanocomposites. Mater Chem Phys 186:513–522

    Article  CAS  Google Scholar 

  69. Samsudin AS, Khairul WM, Isa MIN (2012) Characterization on the potential of carboxy methylcellulose for application as proton conducting biopolymer electrolytes. J Non-Cryst Solids 358:1104–1112

    Article  CAS  Google Scholar 

  70. Ahmad Z, Isa MIN (2012) Ionics conduction via correlated barrier hoping mechanism in Cmc-Sa solid biopolymer electrolytes. Int J Latest Res Sci Technol 1:70–75

    Google Scholar 

  71. Fuzlin AF, Rasali NMJ, Samsudin AS (2018) Effect on ammonium bromide in dielectric behavior based alginate solid biopolymer electrolytes. IOP Conf Ser Mater Sci and Eng 342:012080

    Article  Google Scholar 

  72. Buraidah MH, Teo LP, Majid SR, Arof AK (2009) Ionic conductivity by correlated barrier hopping in NH4I doped chitosan solid electrolyte. Physica B Condens Matter 404:1373–1379

    Article  CAS  Google Scholar 

  73. Mohamed NS, Arof AK (2004) Investigation of electrical and electrochemical properties of PVDF-based polymer electrolytes. J Power Sources 132:229–234

    Article  CAS  Google Scholar 

  74. Ramlli MA, Isa MIN (2016) Structural and ionic transport properties of protonic conducting solid biopolymer electrolytes based on carboxymethyl cellulose doped with ammonium fluoride. J Phys Chem B 120:11567–11573

    Article  CAS  Google Scholar 

  75. Chai MN, Isa MIN (2016) Novel proton conducting solid bio-polymer electrolytes based on carboxymethyl cellulose doped with oleic acid and plasticized with glycerol. Sci Rep 6:27328

    Article  CAS  Google Scholar 

  76. Samsudin AS, Kuan ECH, Isa MIN (2011) Investigation of the potential of proton-conducting biopolymer electrolytes based methyl cellulose-glycolic acid. Int J Polym Anal Charact 16:477–485

    Article  CAS  Google Scholar 

  77. Majid SR, Arof AK (2007) Electrical behavior of proton-conducting chitosan-phosphoric acid-based electrolytes. Phys B Condens Matter 390:209–215

    Article  CAS  Google Scholar 

  78. Arof AK, Amirudin S, Yusof SZ, Noor IM (2014) A method based on impedance spectroscopy to determine transport properties of polymer electrolytes. Phys Chem Chem Phys 16:1856–1867

    Article  CAS  Google Scholar 

  79. Zainuddin NK, Samsudin AS (2018) Investigation on the effect of NH4Br at transport properties in K–carrageenan based biopolymer electrolytes via structural and electrical analysis. Mater Today Commun 14:199–209

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank MOHE for FRGS (RDU170115), Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, for the help and support given for the completion of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Samsudin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazuki, N.F., Fuzlin, A.F., Saadiah, M.A. et al. An investigation on the abnormal trend of the conductivity properties of CMC/PVA-doped NH4Cl-based solid biopolymer electrolyte system. Ionics 25, 2657–2667 (2019). https://doi.org/10.1007/s11581-018-2734-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2734-9

Keywords

Navigation