Skip to main content

Advertisement

Log in

EDTA-Fe(III) sodium complex–derived bubble-like nitrogen-enriched highly graphitic carbon nanospheres as anodes with high specific capacity for lithium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Bubble-like nitrogen-enriched graphitic carbon was prepared using EDTA-Fe(III) sodium complex (ethylenediaminetetraacetic acid ferric sodium salt) as the precursor. The complex was carbonized at 700 °C for 2 h in argon atmosphere, and then, the product was washed with diluted hydrochloric acid and distilled water to remove iron and iron compounds so as to achieve the hollow carbon nanospheres. The as-prepared bubble-like carbon material exhibits excellent energy storage capability as the anode for lithium-ion batteries. A maximal reversible specific capacity of about 505 mAh g−1 can be achieved at a current density of 100 mA g−1, and 150 mAh g−1 can still be retained at a high current density of 1600 mA g−1, demonstrating superior cycling performance and excellent rate capability mainly due to the unique porous architecture and improved conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ali B, ur-Rehman A, Ghafoor F, Shahzad MI, Shah SK, Abbas SM (2018) J Power Sources 396:467–475

    CAS  Google Scholar 

  2. Béguin F, Frackowiak E (2010) Carbons for electrochemical energy storage and conversion systems. CRC Press, Boca Raton

    Google Scholar 

  3. Xie Q, Song R, Zhao P, Zhang Y, Wu S, Xie D (2018) In-plane porous Co3O4nanosheet assembled 3D hierarchical clusters grown on stainless steel mesh as binder-free anodes for high performance lithium ion batteries. J Mater Chem A 6:8388–8395

    CAS  Google Scholar 

  4. Flandrois S, Simon B (1999) Carbon materials for lithium-ion rechargeable batteries. Carbon 37:165–180

    CAS  Google Scholar 

  5. Xie Q, Zhu Y, Zhao P, Zhang Y, Wu S (2018) One-pot hydrothermal fabrication and enhanced lithium storage capability of SnO2 nanorods intertangled with carbon nanotubes and graphene nanosheets. J Mater Sci 53:9206–9216

    CAS  Google Scholar 

  6. Ni J, Huang Y, Gao L (2013) A high-performance hard carbon for Li-ion batteries and supercapacitors application. J Power Sources 223:306–311

    CAS  Google Scholar 

  7. Li X, Liu J, Zhang Y, Li Y, Liu H, Meng X, Yang J, Geng D, Wang D, Li R, Sun X (2012) High concentration nitrogen doped carbon nanotube anodes with superior Li+ storage performance for lithium rechargeable battery application. J Power Sources 197:238–245

    CAS  Google Scholar 

  8. Dai L, Chang DW, Baek J-B, Lu W (2012) Carbon Nanomaterials for Advanced Energy Conversion and Storage. Small 8:1130–1166

    CAS  PubMed  Google Scholar 

  9. Chen Y, Li X, Park K, Song J, Hong J, Zhou L, Mai Y-W, Huang H, Goodenough JB (2013) Hollow Carbon-Nanotube/Carbon-Nanofiber Hybrid Anodes for Li-Ion Batteries. J Am Chem Soc 135:16280–16283

    CAS  PubMed  Google Scholar 

  10. Ziqi T, Kun N, Guanxiong C, Wencong Z, Zhuchen T, Mujtaba I, Qiubo Z, Huijuan W, Litao S, Xianjun Z, Xiaojun W, Hengxing J, RR S, Yanwu Z (2017) Adv Mater 29:1603414

    Google Scholar 

  11. de las Casas C, Li W (2012) J Power Sources 208:74–85

    Google Scholar 

  12. Zhao Y, Wang LP, Sougrati MT, Feng Z, Leconte Y, Fisher A, Srinivasan M, Xu Z (2017) Adv Energy Mater 7:1601424 n/a

    Google Scholar 

  13. Yan C, Yang J, Xie Q, Lu Z, Liu B, Xie C, Wu S, Zhang Y, Guan Y (2015) Novel nanoarchitectured Zn2SnO4 anchored on porous carbon as high performance anodes for lithium ion batteries. Mater Lett 138:120–123

    CAS  Google Scholar 

  14. Cao X, Zheng B, Rui X, Shi W, Yan Q, Zhang H (2014) Metal Oxide-Coated Three-Dimensional Graphene Prepared by the Use of Metal-Organic Frameworks as Precursors. Angew Chem 126:1428–1433

    Google Scholar 

  15. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407:496–499

    CAS  PubMed  Google Scholar 

  16. Kovalenko I, Zdyrko B, Magasinski A, Hertzberg B, Milicev Z, Burtovyy R, Luzinov I, Yushin G (2011) A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries. Science 334:75–79

    CAS  PubMed  Google Scholar 

  17. Koo B, Kim H, Cho Y, Lee KT, Choi N-S, Cho J (2012) A Highly Cross-Linked Polymeric Binder for High-Performance Silicon Negative Electrodes in Lithium Ion Batteries. Angew Chem Int Ed 51:8762–8767

    CAS  Google Scholar 

  18. Ata ur R, Ali G, Abbas SM, Iftikhar M, Zahid M, Yaseen S, Saleem S, Haider S, Arshad M, Badshah A (2019) Chem Eng J 375:122021

    Google Scholar 

  19. Campbell B, Ionescu R, Favors Z, Ozkan C, Ozkan M (2015) Bio-Derived, Binderless, Hierarchically Porous Carbon Anodes for Li-ion Batteries. Sci Rep 5:14575

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen S, Wu J, Zhou R, Zuo L, Li P, Song Y, Wang L (2015) Porous Carbon Spheres Doped with Fe3C as an Anode for High-Rate Lithium-ion Batteries. Electrochim Acta 180:78–85

    CAS  Google Scholar 

  21. Javed M, Saqib ANS, Ata ur R, Ali B, Faizan M, Anang DA, Iqbal Z, Abbas SM (2019) Electrochim Acta 297:250–257

    CAS  Google Scholar 

  22. Long Q, Wei-Min C, Zhao-Hui W, Qing-Guo S, Xiang L, Li-Xia Y, Xian-Luo H, Wu-Xing Z, Yun-Hui H (2012) Adv Mater 24:2047–2050

    CAS  Google Scholar 

  23. Chen L, Wang Z, He C, Zhao N, Shi C, Liu E, Li J (2013) Porous Graphitic Carbon Nanosheets as a High-Rate Anode Material for Lithium-Ion Batteries. ACS Appl Mater Interfaces 5:9537–9545

    CAS  PubMed  Google Scholar 

  24. Hassoun J, Bonaccorso F, Agostini M, Angelucci M, Betti MG, Cingolani R, Gemmi M, Mariani C, Panero S, Pellegrini V, Scrosati B (2014) An Advanced Lithium-Ion Battery Based on a Graphene Anode and a Lithium Iron Phosphate Cathode. Nano Lett 14:4901–4906

    CAS  PubMed  Google Scholar 

  25. Bonaccorso F, Colombo L, Yu G, Stoller M, Tozzini V, Ferrari AC, Ruoff RS, Pellegrini V (2015) Science:347

  26. Kaskhedikar NA, Maier J (2009) Lithium Storage in Carbon Nanostructures. Adv Mater 21:2664–2680

    CAS  Google Scholar 

  27. Zhu J, Yang D, Yin Z, Yan Q, Zhang H (2014) Graphene and Graphene-Based Materials for Energy Storage Applications. Small 10:3480–3498

    CAS  PubMed  Google Scholar 

  28. Wu S, Xu R, Lu M, Ge R, Iocozzia J, Han C, Jiang B, Lin Z (2015) Adv Energy Mater 5:1500400 n/a

    Google Scholar 

  29. Xie Q, Zhang Y, Zhu Y, Fu W, Zhang X, Zhao P, Wu S (2017) Graphene enhanced anchoring of nanosized Co3O4 particles on carbon fiber cloth as free-standing anode for lithium-ion batteries with superior cycling stability. Electrochim Acta 247:125–131

    CAS  Google Scholar 

  30. Buiel E, Dahn JR (1999) Li-insertion in hard carbon anode materials for Li-ion batteries. Electrochim Acta 45:121–130

    CAS  Google Scholar 

  31. Wu Y-P, Wan C-R, Jiang C-Y, Fang S-B, Jiang Y-Y (1999) Mechanism of lithium storage in low temperature carbon. Carbon 37:1901–1908

    CAS  Google Scholar 

  32. Ma C, Zhao Y, Li J, Song Y, Shi J, Guo Q, Liu L (2013) The electrochemical performance of pitch coke anodes containing hollow carbon nanostructures and nickel nanoparticles for high-power lithium ion batteries. Electrochim Acta 112:394–402

    CAS  Google Scholar 

  33. Wu YP, Rahm E, Holze R (2003) Carbon anode materials for lithium ion batteries. J Power Sources 114:228–236

    CAS  Google Scholar 

  34. Nitta N, Wu F, Lee JT, Yushin G (2015) Li-ion battery materials: present and future. Mater Today 18:252–264

    CAS  Google Scholar 

  35. Jung C-H, Choi J, Kim W-S, Hong S-H (2018) A nanopore-embedded graphitic carbon shell on silicon anode for high performance lithium ion batteries. J Mater Chem A 6:8013–8020

    CAS  Google Scholar 

  36. Zhang J, Wang K, Xu Q, Zhou Y, Cheng F, Guo S (2015) Beyond Yolk–Shell Nanoparticles: Fe3O4@Fe3C Core@Shell Nanoparticles as Yolks and Carbon Nanospindles as Shells for Efficient Lithium Ion Storage. ACS Nano 9:3369–3376

    CAS  PubMed  Google Scholar 

  37. Sadezky A, Muckenhuber H, Grothe H, Niessner R, Pöschl U (2005) Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon 43:1731–1742

    CAS  Google Scholar 

  38. Pawlyta M, Rouzaud J-N, Duber S (2015) Raman microspectroscopy characterization of carbon blacks: Spectral analysis and structural information. Carbon 84:479–490

    CAS  Google Scholar 

  39. Sun N, Liu H, Xu B (2015) Facile synthesis of high performance hard carbon anode materials for sodium ion batteries. J Mater Chem A 3:20560–20566

    CAS  Google Scholar 

  40. Zhou G, Wang D-W, Shan X, Li N, Li F, Cheng H-M (2012) Hollow carbon cage with nanocapsules of graphitic shell/nickel core as an anode material for high rate lithium ion batteries. J Mater Chem 22:11252–11256

    CAS  Google Scholar 

  41. Xie Q, Bao R, Xie C, Zheng A, Wu S, Zhang Y, Zhang R, Zhao P (2016) Core-shell N-doped active carbon fiber@graphene composites for aqueous symmetric supercapacitors with high-energy and high-power density. J Power Sources 317:133–142

    CAS  Google Scholar 

  42. Lang J-w, Yan X-b, Liu W-w, Wang R-t, Xue Q-j (2012) J Power Sources 204:220–229

    CAS  Google Scholar 

  43. Xing L-B, Xi K, Li Q, Su Z, Lai C, Zhao X, Kumar RV (2016) Nitrogen, sulfur-codoped graphene sponge as electroactive carbon interlayer for high-energy and -power lithium–sulfur batteries. J Power Sources 303:22–28

    CAS  Google Scholar 

  44. Li X, Geng D, Zhang Y, Meng X, Li R, Sun X (2011) Superior cycle stability of nitrogen-doped graphene nanosheets as anodes for lithium ion batteries. Electrochem Commun 13:822–825

    CAS  Google Scholar 

  45. Qie L, Chen W-M, Wang Z-H, Shao Q-G, Li X, Yuan L-X, Hu X-L, Zhang W-X, Huang Y-H (2012) Nitrogen-Doped Porous Carbon Nanofiber Webs as Anodes for Lithium Ion Batteries with a Superhigh Capacity and Rate Capability. Adv Mater 24:2047–2050

    PubMed  Google Scholar 

  46. Xie Q, Bao R, Zheng A, Zhang Y, Wu S, Xie C, Zhao P (2016) Sustainable Low-Cost Green Electrodes with High Volumetric Capacitance for Aqueous Symmetric Supercapacitors with High Energy Density. ACS Sustain Chem Eng 4:1422–1430

    CAS  Google Scholar 

  47. Zhao X, Xia D, Yue J, Liu S (2014) In-situ generated nano-Fe3C embedded into nitrogen-doped carbon for high performance anode in lithium ion battery. Electrochim Acta 116:292–299

    CAS  Google Scholar 

  48. Su L, Zhong Y, Zhou Z (2013) Role of transition metal nanoparticles in the extra lithium storage capacity of transition metal oxides: a case study of hierarchical core–shell Fe3O4@C and Fe@C microspheres. J Mater Chem A 1:15158–15166

    CAS  Google Scholar 

  49. Huang Y-G, Lin X-L, Zhang X-H, Pan Q-C, Yan Z-X, Wang H-Q, Chen J-J, Li Q-Y (2015) Fe 3 C@carbon nanocapsules/expanded graphite as anode materials for lithium ion batteries. Electrochim Acta 178:468–475

    CAS  Google Scholar 

  50. Wang F, Song R, Song H, Chen X, Zhou J, Ma Z, Li M, Lei Q (2015) Simple synthesis of novel hierarchical porous carbon microspheres and their application to rechargeable lithium-ion batteries. Carbon 81:314–321

    CAS  Google Scholar 

  51. Winter M, Besenhard JO, Spahr ME, Novák P (1998) Insertion Electrode Materials for Rechargeable Lithium Batteries. Adv Mater 10:725–763

    CAS  Google Scholar 

  52. Zheng T, Xue JS, Dahn JR (1996) Lithium Insertion in Hydrogen-Containing Carbonaceous Materials. Chem Mater 8:389–393

    CAS  Google Scholar 

  53. Liu E, Shen H, Xiang X, Huang Z, Tian Y, Wu Y, Wu Z, Xie H (2012) A novel activated nitrogen-containing carbon anode material for lithium secondary batteries. Mater Lett 67:390–393

    CAS  Google Scholar 

  54. Han F-D, Yao B, Bai Y-J (2011) Preparation of Carbon Nano-Onions and Their Application as Anode Materials for Rechargeable Lithium-Ion Batteries. J Phys Chem C 115:8923–8927

    CAS  Google Scholar 

  55. Zhou X, Ma L, Yang J, Huang B, Zou Y, Tang J, Xie J, Wang S, Chen G (2013) Properties of graphitized boron-doped coal-based coke powders as anode for lithium-ion batteries. J Electroanal Chem 698:39–44

    CAS  Google Scholar 

  56. Wu F, Huang R, Mu D, Wu B, Chen Y (2016) Controlled synthesis of graphitic carbon-encapsulated α-Fe2O3 nanocomposite via low-temperature catalytic graphitization of biomass and its lithium storage property. Electrochim Acta 187:508–516

    CAS  Google Scholar 

  57. Cao S, Feng X, Song Y, Liu H, Miao M, Fang J, Shi L (2016) In Situ Carbonized Cellulose-Based Hybrid Film as Flexible Paper Anode for Lithium-Ion Batteries. ACS Appl Mater Interfaces 8:1073–1079

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the Tianjin Key Projects of New Materials Science and Technology (17ZXCLGX00050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinxing Xie.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Q., Zhang, Y., Xie, D. et al. EDTA-Fe(III) sodium complex–derived bubble-like nitrogen-enriched highly graphitic carbon nanospheres as anodes with high specific capacity for lithium-ion batteries. Ionics 26, 85–94 (2020). https://doi.org/10.1007/s11581-019-03234-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03234-8

Keywords

Navigation