Skip to main content
Log in

Investigation of imidazole derivatives as corrosion inhibitors for mild steel in sulfuric acidic environment: experimental and theoretical studies

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this work, we are interested in studying the effect of the addition of three heterocyclic organic compound derived from imidazole, namely 2-(1,4,5-triphenyl-1H-imidazol-2-yl)phenol (IM-OH), 1,4,5-triphenyl-2-(4-metyoxyphenyl)-1H-imidazole (IM-OCH3), and 3-methoxy-4-(1,4,5-triphenyl-1H-imidazol-2-yl)phenol (IM-H) on the corrosion inhibition of mild steel in acidic medium H2SO4 0.5 M. This study was performed using weight loss and electrochemical and theoretical investigations. The obtained results indicate that IM-OH, IM-OCH3, and IM-H act as excellent inhibitors for mild steel in H2SO4 0.5 M. The results obtained from the electrochemical methods show that IM-OH, IM-OCH3, and IM-H imparted high resistance and behave as mixed type inhibitors. Inhibition efficiency (IE %) increases with the increase of inhibitors concentration to attain 97.7%, 98.9%, and 88.9% at 10−3 M of IM-OH, IM-OCH3, and IM-H respectively. EIS data is analyzed to model the inhibition process through appropriate equivalent circuit model. Thermodynamic and kinetic parameters controlling the adsorption process are calculated and discussed. In addition, the surface of the mild steel has been analyzed by the SEM-EDAX. The theoretical results were in good agreement with experimental measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Rbaa M, Galai M, Benhiba F, Obot IB, Oudda H, EbnTouhami M, Zarrouk A (2018) Synthesis and investigation of quinazoline derivatives based on 8-hydroxyquinoline as corrosion inhibitors for mild steel in acidic environment: experimental and theoretical studies. Ionics 2:1–19. https://doi.org/10.1007/s11581-018-2817-7

    Article  CAS  Google Scholar 

  2. Shylesh BS, Ventkatesh TV, Praveen BM (2011) Corrosion inhibition studies of mild steel by new inhibitor in different corrosive medium. Res J Chem Sci 1(7):46–50

    Google Scholar 

  3. Tebhji K, Hammouti B, Oudda H, Ramdani A, Benkadour A (2005) The inhibitive effect of bipyrazolic derivatives on the corrosion of steel in hydrochloric acid solution. Appl Surf Sci 252:1378–1385

    Google Scholar 

  4. Fouda AS, Ismail MA, Al-Khamri AA, Abousalem AS (2019) Experimental, quantum chemical and molecular dynamic studies on the action of arylthiophene derivatives as acid corrosion inhibitors. J Mol Liq 290:111178. https://doi.org/10.1016/j.molliq.2019.111178

    Article  CAS  Google Scholar 

  5. Moradi Z, Attar MM (2014) An investigation on the inhibitory action of benzazole derivatives as a consequence of sulfur atom induction. Appl Surf Sci 317:657–665

    CAS  Google Scholar 

  6. Shivakumar SS, Mohana KN (2012) Cantellaasiatica extracts as green corrosion inhibitors for mild steel in 0.5 M H2SO4. Adv Appl Sci Res 3:3097–3106

    CAS  Google Scholar 

  7. Galai M, El Faydy M, El Kacimi Y, Dahmani K, Alaoui K, Touir R, Lakhrissi B, EbnTouhami M (2017) Portugaliae Electrochimica Acta 35:233

    CAS  Google Scholar 

  8. Hammouti B, Aouniti A, Taleb M, Brighli M, Kertit S (1995) L-methionine methyl ester hydrochloride as a corrosion inhibitor of iron in acid chloride solution. Corrosion 51:411–416

    CAS  Google Scholar 

  9. El-Ouafi A, Hammouti B, Oudda H, Kertit S, Touzani R, Ramdani A (2002) New bipyrazole derivatives as effective inhibitors for the corrosion of mild steel in 1M HCI medium. Anti-Corros Meth Mater 49:199–204

    CAS  Google Scholar 

  10. Salghi R, Bazzi L, Hammouti B, Bouchtart A, Kertit S, AitAddi ZA, EL Alami Z (2000) Étude électrochimique de l'inhibition de la corrosion de l'alliage d'aluminium 3003 en milieu bicarbonate par les composés triazolique. Ann Chim Sci Mater 25:187–200

    CAS  Google Scholar 

  11. Bentiss F, Traisnel M, Gengembre L, Lagrene’e M (1999) A new triazole derivative as inhibitor of the acid corrosion of mild steel: electrochemical studies, weight loss determination, SEM and XPS. Appl Surf Sci 152:237–249

    CAS  Google Scholar 

  12. Alaoui K, Touir R, Galai M, Serrar H, Ouakki M, Kaya S, Tüzün B, Boukhris S, EbnTouhami M, El Kacimi Y (2018) Electrochemical and computational studies of some triazepine carboxylate compounds as acid corrosion inhibitors for mild steel. Journal of Bio- and Tribo-Corrosion 4:37

    Google Scholar 

  13. Alaoui K, Ouakki M, Abousalem AS, Serrar H, Galai M, Derbali S, Nouneh K, Boukhris S, EbnTouhami M, El Kacimi Y (2019) Molecular dynamics, Monte-Carlo simulations and atomic force microscopy to study the interfacial adsorption behaviour of some triazepine carboxylate compounds as corrosion inhibitors in acid medium. Journal of Bio- and Tribo-Corrosion 5:1

    Google Scholar 

  14. Kertit S, Essouffi H, Hammouti B, Benkaddour M (1998) 1-phenyl-5-mercapto-1,2,3,4-tétrazole (PMT): un nouvel inhibiteur de corrosion de l’alliage Cu-Zn efficace à très faible concentration. J Chim Phys 95:2072

    Google Scholar 

  15. Ech-chihbi E, Salim R, Oudda H, Elaatiaoui A, Rais Z, Oussaid A, El Hajjaji F, Hammouti B, Elmsellem H, Taleb M (2016) Effect of some imidazopyridine compounds on carbon steel corrosion in hydrochloric acid solution. Der Pharma Chemica 8(13):214–230

    CAS  Google Scholar 

  16. Ech-chihbi E, Belghiti ME, Salim R, Oudda H, Taleb M, Benchat N, Hammouti B, El-Hajjaji F (2017) Experimental and computational studies on the inhibition performance of the organic compound “2-phenylimidazo [1,2-a]pyrimidine-3-carbaldehyde” against the corrosion of carbon steel in 1.0 M HCl solution. J Surf Interfaces 9:206–217

    CAS  Google Scholar 

  17. Galai M, Rbaa M, El Kacimi Y, Ouakki M, Dkhirech N, Touir R, Lakhrissi B, EbnTouhami M (2016) Anal Bioanal Electrochem 9:80

  18. Rbaa M, Galai M, El Kacimi Y, Ouakki M, Touir R, Lakhrissi B, EbnTouhami M (2017) PortugaliaeElectrochimica Acta 35(6):323–338

  19. Ouakki M, Rbaa M, Galai M, Lakhrissi B, Rifi EH, Cherkaoui M (2018) Experimental and quantum chemical investigation of imidazole derivatives as corrosion inhibitors on mild steel in 1.0 M hydrochloric acid. Journal of Bio-and Tribo-Corrosion 4:35

    Google Scholar 

  20. Ouakki M, Galai M, Rbaa M, Abousalem AS, Lakhrissi B, Rifi EH, Cherkaoui M (2019) Quantum chemical and experimental evaluation of the inhibitory action of two imidazole derivatives on mild steel corrosion in sulphuric acid medium. Heliyon 5:e02759

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Matjaz F, Jennifer J (2014) Application of corrosion inhibitors for steels in acidic media for the oil and gas industry: a review, Corros. Sci 86:17–41

    Google Scholar 

  22. Salim R, Elaatiaoui A, Benchat N, Ech-chihbi E, Rais Z, Oudda H, El Hajjaji F, El Aoufir Y, Taleb M (2017) Corrosion behavior of a smart inhibitor in hydrochloric acid molar: experimental and theoretical studies. JMES 8(10):3747–3758

    CAS  Google Scholar 

  23. Gupta NK, Verma C, Quraishi MA, Mukherjee AK (2016) Schiff's bases derived from l-lysine and aromatic aldehydes as green corrosion inhibitors for mild steel: experimental and theoretical studies. J Mol Liq 215:47–57

    CAS  Google Scholar 

  24. EmregülKC, Atakol O (2003) Mater. Chem. Phys 82: 188–193

  25. ASTM G-81, (1995) Annual book of ASTM standards

  26. Dhanapala A, Boopathy SR, Balasubramanian V (2012) Influence of pH value, chloride ion concentration and immersion time on corrosion rate of friction stir welded AZ61A magnesium alloy weldments. J Alloys Compd 523:49–60

    Google Scholar 

  27. Scendo M (2008) Inhibition of copper corrosion in sodium nitrate solutions with nontoxic inhibitors. Corros Sci 50:1584–1592

    CAS  Google Scholar 

  28. Hermas AA, Morad MS (2008) Corros. Sci 50 (9):2710–2717

  29. Liu FG, Du M, Zhang J, Qiu M (2009) Corros. Sci 51 (1) :102–109

  30. Fouda AS, Ismail MA, GY EL-e, Abousalem AS (2017) Evaluation of 4-amidinophenyl-2, 2′-bithiophene and its aza-analogue as novel corrosion inhibitors for CS in acidic media: experimental and theoretical study. J Mol Liq 240:372–388

    CAS  Google Scholar 

  31. Abousalem AS, Ismail MA, Fouda AS (2018) A complementary experimental and in silico studies on the action of fluorophenyl-2,2′-bichalcophenes as ecofriendly corrosion inhibitors and biocide agents. https://doi.org/10.1016/j.molliq.2018.11.125

  32. El Belghiti M, Karzazi Y, Dafali A, Hammouti B, Bentiss F, Obot IB, Bahadur I, Ebenso EE (2016) Experimental, quantum chemical and Monte Carlo simulation studies of 3,5-disubstituted-4-amino-1,2,4-triazoles as corrosion inhibitors on mild steel in acidic medium. J Mol Liq 218:281–293

    Google Scholar 

  33. Frisch A (2009) Gaussian 09W, Wallingford USA 25

  34. Rahmani H, IsmailyAlaoui K, Emran KM, El Hallaoui A, Taleb M, El Hajji S, Labriti B, Ech-chihbi E, Hammouti B, El-Hajjaji F (2019) Experimental and DFT investigation on the corrosion inhibition of mild steel by 1, 2, 3- triazole regioisomers in 1M hydrochloric acid solution, Int. J Electrochem Sci 14:985–998

    CAS  Google Scholar 

  35. Elemike Elias E, Nwankwo Henry U, Onwudiwe Damian C, Hosten Eric C (2017) Synthesis, crystal structures, quantum chemical studies and corrosion inhibition potentials of 4-(((4 ethylphenyl)imino)methyl)phenol and (E)-4-((naphthalen-2- ylimino) methyl) phenol Schiff bases. J Mol Struct 1147:252–265

    Google Scholar 

  36. Yadav DK, Quraishi MA (2012) Electrochemical investigation of substituted pyranopyrazoles adsorption on mild steel in acid solution. Ind Eng Chem Res 51:8194–82100

    CAS  Google Scholar 

  37. Hmamou DB, Salghi R, Zarrouk A, Aouad MR, Benali O, Zarrok H, Messali M, Hammouti B, Kabanda M, Bouachrine M, Ebenso EE (2013) Weight loss, electrochemical, quantum chemical calculation, and molecular dynamics simulation studies on 2-(Benzylthio)-1,4,5-triphenyl-1H-imidazole as an inhibitor for carbon steel corrosion in hydrochloric acid. Ind Eng Chem Res 52:14315–14327

    CAS  Google Scholar 

  38. Obot B, Obi-Egbedi NO (2011) Anti-corrosive properties of xanthone on mild steel corrosion in sulphuric acid: experimental and theoretical investigations. Curr Appl Phys 11:382–392

    Google Scholar 

  39. Popova A, Christov M, Raicheva S, Sokolova E (2004) Corros. Sci 46:1333–1350

  40. Ahamad I, Quraishi MA (2010) Corros. Sci 52:651–656

  41. Dkhireche N, MouhsineGalai YEK, Rbaa M, Ouakki M, BrahimLakhrissi MET (2018) New Quinoline derivatives as sulfuric acid inhibitor’s for mild steel. Anal Bioanal Electrochem 10(1):111–135

    CAS  Google Scholar 

  42. Hegazy MA, Hasan AM, Emara MM, Bakr MF, Youssef AH (2012) Corros. Sci 65:67–76

  43. Ashassi-Sarkhadi, Asghri E (2008). Electrochim. Acta 54:162

  44. Abbas A, Fazakas É, Török T (2018) Corrosion studies of steel rebar samples in neu- tral sodium chloride solution also in the presence of a bio-based (green) in- hibitor. Int J Corros Scale Inhib 7:38–47

    CAS  Google Scholar 

  45. Kalaiselvi K, Chung I-M, Kim S-H, Prabakaran M (2018) Corrosion resistance of mild steel in sulphuric acid solution by Coreopsis tinctoria extract: electrochemical and surface studies. Anti Corros Methods Mater 65(4):408–416

    CAS  Google Scholar 

  46. Fidrusli A, Mahmood M (2018) Ginger extract as green corrosion inhibitor of mild steel in hydrochloric acid solution. In: Proceedings of the IOP conference series: materials science and engineering, IOP Publishing 290: 012087

  47. Dehghani A, Bahlakeh G, Ramezanzadeh B, Ramezanzadeh M (2019) Detailed macro−/micro-scale exploration of the excellent active corrosion inhibition of a novel environmentally friendly green inhibitor for carbon steel in acidic environments. J Taiwan Inst Chem Eng 100:239–261

    CAS  Google Scholar 

  48. Tang Y, Yang X, Yang W, Wan R, Chen Y, Yin X (2010) A preliminary investigation of corrosion inhibition of mild steel in 0.5 M H2SO4 by 2-amino-5-(n-pyridyl)-1,3,4- thiadiazole: polarization, EIS and molecular dynamics simulations. Corros Sci 52:1801–1808

    CAS  Google Scholar 

  49. Saleh MM, Atia AA (2006) Effects of structure of the ionic head of cationic surfactant on its inhibition of acid corrosion of mild steel. J Appl Electrochem 36:899–905

    CAS  Google Scholar 

  50. Solomon MM, Umoren SA (2016) In-situ preparation, characterization and anticorrosion property of polypropylene glycol/silver nanoparticles composite for mild steel corrosion in acid solution. J Colloid Interface Sci 462:29–41

    CAS  PubMed  Google Scholar 

  51. Ferreira ES, Giancomelli C, Spinelli A (2004) Evaluation of the inhibitor effect of 1-ascorbic acid on the corrosion of mild steel. Mater Chem Phys 1:129–134

    Google Scholar 

  52. Li X, Deng S, Hui F (2011) Corros. Sci 53 :302–309

  53. Deng S, Li X, Hui F (2011) Corros. Sci 53:3596–3602

  54. Naseri E, Hajisafari M, Kosari A, Talari M, Hosseinpour S, Davoodi A (2018) In- hibitive effect of clopidogrel as a green corrosion inhibitor for mild steel; statistical modeling and quantum Monte Carlo simulation studies. J Mol Liq 269:193–202

    CAS  Google Scholar 

  55. Srivastava M, Tiwari P, Srivastava S, Kumar A, Ji G, Prakash R (2018) Low cost aque- ous extract of Pisum sativum peels for inhibition of mild steel corrosion. J Mol Liq 254:357–368

    CAS  Google Scholar 

  56. Asan A, Soylu S, Kıyak T, Yıldırım F, Oztas SG, Ancın N, Kabasakaloğlu M (2006) Corros. Sci 48:3933

  57. El Mehdi B, Mernari B, Traisnel M, Bentiss F, Lagrenee M (2003) Synthesis and comparative study of the inhibitive effect of some new triazole derivatives towards corrosion of mild steel in hydrochloric acid solution. Mater Chem Phys 77:489–496

    Google Scholar 

  58. Moussa Ouakki, MouhsineGalai, Mohammed Cherkaoui, El-HousseineRifi, Zineb Hatim (2018) Anal. Bioanal. Electrochem 10(7):943–960

  59. Singh AK, Quraishi MA (2009) Corros. Sci 51:2752

  60. Kadiri L, Galai M, Ouakki M, Essaadaoui Y, Ouass A, Cherkaoui M, Rifi EH, Lebkiri A (2018) Anal. Bioanal. Electrochem 10 :249

  61. Ouakki M, Galai M, Cherkaoui M, Rifi EH, Hatim Z (2020) J Chem Technol Metall 55(2): 436–448

  62. Singh AK, Quraishi MA (2010) The effect of some bis-thiadiazole derivatives on the corrosion of mild steel in hydrochloric acid. Corros Sci 52:1373–1385

    CAS  Google Scholar 

  63. M'hanni N, Galai M, Anik T, EbnTouhami M, Rifi EH, Asfari Z, Touir R (2017) Surface CoatingsTechnol 310: 8

  64. Galai M, Ouassir J, EbnTouhami M, Nassali H, Benqlilou H, Belhaj T, Berrami K, Mansouri I, Oauki B (2017) α-Brass and (α+ β) brass degradation processes in Azrou soil medium used in plumbing devices. Journal of Bio-and Tribo-Corrosion 3:30

  65. Zheng X, Zhang S, Li W, Yin L, He J, Wua J (2014) Corros. Sci 80:383

  66. Hegazy MA, Abdallah M, Awad MK, Rezk M (2014) Three novel di-quaternary ammonium salts as corrosion inhibitors for API X65 steel pipeline in acidic solution. Part I: experimental results. Corros Sci 81:54–64

    CAS  Google Scholar 

  67. El-TaibHeakal F, Fouda A S, Radwan MS (2011) Int J Electrochem Sci 6:3140

  68. MayakrishnanPrabakaran S-HK, NithiyanandhamMugila VH, Parameswari K, Chitra S, Chung I-M (2017) Aster koraiensis as nontoxic corrosion inhibitor for mild steel in sulfuric acid. J Ind Eng Chem 52:235–242

    Google Scholar 

  69. Sherif EM, Erasmus RM, Comins JD (2008) Corros. Sci 50:3439

  70. AshassiSorkhabi H, Seifzadeh D, Hosseini M G (2008) Corros. Sci 50: 3363

  71. Tao Z, Zhang S, Li W, Hou B (2009) Corros. Sci 51: 2588

  72. Verma C, Olasunkanmi LO, Obot IB, Ebensob Eno E, Quraishi MA (2016) 5-Arylpyrimido-[4,5-b]quinoline-diones as new and sustainable corrosion inhibitors for mild steel in 1 M HCl: a combined experimental and theoretical approach. RSC Adv 6:15639–15654

    CAS  Google Scholar 

  73. Hu Z, Meng Y, Ma X, Zhu H, Li J, Li C, Cao D (2016) Experimental and theoretical studies of benzothiazole derivatives as corrosion inhibitors for carbon steel in 1 M HCl. Corros Sci 112:563–575

    CAS  Google Scholar 

  74. Zarrouk A, Hammouti B, Lakhlifi T, Traisnel M, Vezin H, Bentiss F (2015) New 1 H-pyrrole-2,5-dione derivatives as efficient organic inhibitors of carbon steel corrosion in hydrochloric acid medium: electrochemical, XPS and DFT studies. Corros Sci 90:572–584

    CAS  Google Scholar 

  75. Kalman E, Varhegi B, Bako I, Felhosi I, Karman FH, Shaban A (1994) Corrosion inhibition by 1-hydroxy-ethane-1, 1-diphosphonic acid an electrochemical impedance spectroscopy study. J Electrochem Soc 141:3357–3360

    CAS  Google Scholar 

  76. Abdel-Gaber A, Abd-El-Nabey B, Sidahmed I, El-Zayady A, Saadawy M (2006) Corros. Sci 48 (9):2765–2779

  77. Do D (1998) Adsorption analysis: equilibria and kinetics. Imperial College Press, London

    Google Scholar 

  78. Bockris O’M, KhanS U M (1993) Surface electrochemistry-a molecular level approach New York, Plenum 1014

  79. Langmuir I (1916) The constitution and fundamental properties of solids and liquids. J Am Chem Soc 38(11):2221–2295

    CAS  Google Scholar 

  80. Tempkin MI, Pyzhev V (1940) Kinetics of ammonia synthesis on promoted iron catalyst. Acta Phys Chim USSR 12:327–356

    Google Scholar 

  81. Freundlich HMF (1906) Over the adsorption in solution. J Phys Chem 57:385–471

    CAS  Google Scholar 

  82. Frumkin AN (1925) Z Phys Chem 116:466

    CAS  Google Scholar 

  83. Horsfall M, Spiff AI (2005) Equilibrium sorption study of Al3+, Co2+ and Ag2+ in aqueous solutions by fluted pumpkin (Telfairiaoccidentalis HOOK) waste biomass. Acta Chim Slov 52:174–181

    Google Scholar 

  84. Kastening B, Holleck L (1965) Talanta 12:1259

  85. El-Awady AA, Abd-El-Nabey BA, Aziz SG (1992) Kinetic-thermodynamic and adsorption isotherms analyses for the inhibition of the acid corrosion of steel by cyclic and open-chain amines. J Electrochem Soc 139:2149

    CAS  Google Scholar 

  86. Flis J, Zakroczymski T (1996) Impedance study of reinforcing steel in simulated pore solution with tannin. J Electrochem Soc 143:2458

    CAS  Google Scholar 

  87. Khadom A A, Yaro A S; Abdul A H (2010) J Chilean Chem Soc 55:150–152

  88. Boumhara K, Tabyaoui M, Jama C, Bentiss F (2015) Artemisia Mesatlantica essential oil as green inhibitor for carbon steel corrosion in 1M HCl solution: electrochemical and XPS investigations. J Ind Eng Chem 29:146–155

    CAS  Google Scholar 

  89. Halambek J, Berkovic K, Vorkapic-Furac J (2010) The influence of Lavandula angustifolia L. oil on corrosion of Al-3Mg alloy. Corros Sci 52:3978–3983

    CAS  Google Scholar 

  90. Behpour M, Ghoreishi SM, Mohammadi N, Soltani N, Salavati-Niasari M (2010) Investigation of some Schiff base compounds containing disulfide bond as HCl corrosion inhibitors for mild steel. Corros Sci 52:4046–4057

    CAS  Google Scholar 

  91. Eteram A N, Aisha A H (2008) Mater Chem Phys 110:145

  92. Singh AK, Quraishi MA (2011) Investigation of the effect of disulfiram on corrosion of mild steel in hydrochloric acid solution. Corros Sci 53:1288–1297

    CAS  Google Scholar 

  93. Nesic S (2007) Key issues related to modelling of internal corrosion of oil and gas pipelines-a review. Corros Sci 49:4308–4338

    CAS  Google Scholar 

  94. Shaban SM, Abd-Elaal AA, Tawfik SM (2016) Gravimetric and electrochemical evaluation of three nonionic dithiol surfactants as corrosion inhibitors for mild steel in 1 M HCl solution. J Mol Liq 216:392–400

    CAS  Google Scholar 

  95. Ali SA, El-Shareef AM, Al-Ghamdi RF, Saeed MT (2005) The isoxazolidines: the effects of steric factor and hydrophobic chain length on the corrosion inhibition of mild steel in acidic medium. Corros Sci 47:2659–2678

    CAS  Google Scholar 

  96. Khrifou R, Galai M, El Bakri H, Larhzil H, Touir R, Ebn Touhami M, Ramli Y (2019) Corrosion inhibition of brass in phosphoric acid solution by 2-(5-methyl-2-nitro-1H-imidazol-1-yl)ethyl benzoate. Chem Data Collect 24:100303

    CAS  Google Scholar 

  97. Yadav M, Kumar S, Tiwari N, Bahadur I, Ebenso EE (2015) Experimental and quantum chemical studies of synthesized triazine derivatives as an efficient corrosion inhibitor for N80 steel in acidic medium. J Mol Liq 212:151–167

    CAS  Google Scholar 

  98. Martinez S, Stern I (2002) Thermodynamic characterization of metal dissolution and inhibitor adsorption processes in the low carbon steel/mimosa tannin/sulfuric acid system. Appl Surf Sci 199:83–89

    CAS  Google Scholar 

  99. Elachouri M, Hajji MS, Salem M, Kertit S, Aride J, Coudert R, Essassi E (1996) Corros52: 103

  100. Olasunkanmi LO, Obot IB, Kabanda MM, Ebenso EE (2015) Some Quinoxalin-6-yl derivatives as corrosion inhibitors for mild steel in hydrochloric acid: experimental and theoretical studies. J Phys Chem C 119(28):16004–16019

    CAS  Google Scholar 

  101. Yadav M, Kumar S, Sinha RR, Bahadur I, Ebenso EE (2015) New pyrimidine derivatives as efficient organic inhibitors on mild steel corrosion in acidic medium: electrochemical, SEM, EDX, AFM and DFT studies. J Mol Liq 211:135–145

    CAS  Google Scholar 

  102. Verma C, Quraishi MA, Obot IB, Ebenso EE (2019) Effect of substituent dependent molecular structure on anti-corrosive behavior of one-pot multicomponent synthesized pyrimido [2,1-B] benzothiazoles: computer modelling supported experimental studies. J Mol Liq 287:110972

    CAS  Google Scholar 

  103. Marvin Sketch Software, Version: 18.22, Chem Axon Ltd., 2018

  104. Raja G, Saravanan K, Sivakumar S (2015) Quantum chemical investigations on benzene derivative: a DFT study. Rasayan J Chem 8(1):37–41

    CAS  Google Scholar 

  105. Migahed MA, El-Rabiei MM, Nady H, Elgendy A, Zaki EG, Abdou MI, Noamy ES (2017) Novel ionic liquid compound act as sweet corrosion inhibitors for X-65 carbon tubing steel: experimental and theoretical studies. J Bio-Tribo Corros 3:31

    Google Scholar 

  106. Allam NK (2007) Thermodynamic and quantum chemistry characterization of the adsorption of triazole derivatives during Muntz corrosion in acidic and neutral solutions. Appl Surf Sci 253:4570–4577

    CAS  Google Scholar 

  107. Ibeji CU, Adejoro IA, Adeleke BB (2015) A benchmark study on the properties of unsubstituted and some substituted polypyrroles. J Phys Chem Biophys 5(6):193/1–193/11

    CAS  Google Scholar 

  108. Elmsellem H, Elyoussfi A, Steli H, Sebbar NK, Essassi EM, Dahmani M, El Ouadi Y, Aouniti A, El Mahi B, Hammouti B (2016) Der Pharma Chem 8 (1): 248–256

  109. Fouda AS, Ismail MA, Abousalem AS, Elewady GY (2017) Experimental and theoretical studies on corrosion inhibition of 4-amidinophenyl-2, 2′-bifuran and its analogues in acidic media. RSC Adv 7(73):46414–46430

    CAS  Google Scholar 

  110. Verma C, Lgaz H, Verma DK, Ebenso EE, Bahadur I, Quraishi MA (2018) Molecular dynamics and Monte Carlo simulations as powerful tools for study of interfacial adsorption behavior of corrosion inhibitors in aqueous phase: a review. J Mol Liq 260:99–120

    CAS  Google Scholar 

  111. Fouda AS, Ismail MA, Mostafa A, Abousalem AS (2019) Comprehensive investigations on the action of cationic terthiophene and bithiophene as corrosion inhibitors: experimental and theoretical studies. New J Chem 43:768–789

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Galai.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouakki, M., Galai, M., Rbaa, M. et al. Investigation of imidazole derivatives as corrosion inhibitors for mild steel in sulfuric acidic environment: experimental and theoretical studies. Ionics 26, 5251–5272 (2020). https://doi.org/10.1007/s11581-020-03643-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03643-0

Keywords

Navigation