Skip to main content

Advertisement

Log in

Porous carbons derived from potato for high-performancesupercapacitors

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Microporous carbons with high surface areas were prepared for supercapacitor electrode materials by using potato as carbon source and KOH as activating agent under different processing conditions. The nitrogen adsorption-desorption isotherms show that the prepared carbons have abundant micropores. It was found that the carbonization temperature, activation temperature, and the mass ratio of the activating agent to potato have dramatic influence on the pore structure of carbons and thus the capacitive performances. The electrochemical results indicate that the sample (TC-600-800-5) carbonized at 600 °C, and then activated at 800 °C with a mass ratio of KOH to carbon of 5:1 shows the best capacitive performance. This may be due to the largest surface area (2392 m2 g−1), largest pore volume (1.00 cm3 g−1), and the largest micropores (0.70 and 1.55 nm). The highest specific capacitance achieved in this research is 337 F g−1 at 1.0 A g−1. The assembled symmetric supercapacitor has a high energy density of 13.6 Wh kg−1 at a power density of 500 W kg−1, and the capacitance can maintain 96.24% 10,000 cycles.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Meng Q, Cai K, Chen Y, Chen L (2017) Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy 36:268–285

    CAS  Google Scholar 

  2. Ma GF, Peng H, Mu JJ, Huang HH, Zhou XZ, Lei ZQ (2013) In situ intercalative polymerization of pyrrole in graphene analogue of MoS2 as advanced electrode material in supercapacitor. J Power Sources 229:72–78

    CAS  Google Scholar 

  3. Ma GF, Guo DY, Sun KJ, Peng H, Yang Q, Zhou XZ, Zhao XL, Lei ZQ (2015) Cotton-based porous activated carbon with a large specific surface area as an electrode material for high-performance supercapacitors. RSC Adv 5:64704–64710

    CAS  Google Scholar 

  4. Largeot C, Portet C, Chmiola J, Taberna PL, Gogotsi Y, Simon P (2008) Relation between the ion size and pore size for an electric double-layer capacitor. J Am Chem Soc 130:2730

    CAS  PubMed  Google Scholar 

  5. Pandolfo AG, Hollenkamp AF (2006) Carbon properties and their role in supercapacitors. J Power Sources 157:11–27

    CAS  Google Scholar 

  6. Nishino A (1996) Capacitors: operating principles, current market and technical trends. J Power Sources 60:137–147

    CAS  Google Scholar 

  7. Mahon PJ, Drummond CJ (2001) Supercapacitors-nanostructured materials and nanoscale processes contributing to the next mobile generation. Aust J Chem 54:473–476

    CAS  Google Scholar 

  8. Zhao L, Fan LZ, Zhou MQ, Guan H, Qiao SY, Antonietti M, Titirici MM (2010) Nitrogen-containing hydrothermal carbons with superior performance in supercapacitors. Adv Mater 22:5202–5206

    CAS  PubMed  Google Scholar 

  9. Tang PY, Han LJ, Zhang L (2014) Facile synthesis of graphite/PEDOT/MnO2 composites on commercial supercapacitor separator membranes as flexible and high-performance supercapacitor electrodes. ACS Appl Mater Interfaces 6:10506–10515

    CAS  PubMed  Google Scholar 

  10. Bello A, Manyala N, Barzegar F, Khaleed AA, Momodu DY, Dangbegnon JK (2016) Renewable pine cone biomass derived carbon materials for supercapacitor application. RSC Adv 6:1800–1809

    CAS  Google Scholar 

  11. Frackowi E, Beguin F (2001) Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39:937–950

    Google Scholar 

  12. Zhang Y, Li XJ, Huang JF, Xing W, Yan ZF (2016) Functionalization of petroleum coke-derived carbon for synergistically enhanced capacitive performance. Nanoscale Res Lett 11:1–7

    Google Scholar 

  13. Zhai YP, Dou YQ, Zhao DY, Fulvio PF, Mayes RT, Dai S (2011) Carbon materials for chemical capacitive energy storage. Adv Mater 23:4828–4850

    CAS  PubMed  Google Scholar 

  14. Li X, Wei BQ (2013) Supercapacitors based on nanostructured carbon. Nano Energy 2:159–173

    CAS  Google Scholar 

  15. Dhillon RS, von Wuehlisch G (2013) Mitigation of global warming through renewable biomass. Biomass Bioenergy 48:75–89

    Google Scholar 

  16. Bi Z, Kong Q, Cao Y, Sun G, Su F, Wei X, Li X, Ahmad A, Xie L, Chen C-M (2019) Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes: a review. J Mater Chem A 7:16028–16045

    CAS  Google Scholar 

  17. Zhou J, Ye S, Zeng Q, Yang H, Chen J, Guo Z, Jiang H, Rajan K (2020) Nitrogen and phosphorus co-doped porous carbon for high-performance supercapacitors. Front Chem 8:105

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang RT, Wang PY, Yan XB, Lang JW, Peng C, Xue QJ (2012) Promising porous carbon derived from celtuce leaves with outstanding supercapacitance and CO2 capture performance. ACS Appl Mater Interfaces 4:5800–5806

    CAS  PubMed  Google Scholar 

  19. Saha D, Li YC, Bi ZH, Chen JH, Keum JK, Hensley DK, Grappe HA, Meyer HM, Dai S, Paranthaman MP, Naskar AK (2014) Studies on supercapacitor electrode material from activated lignin-derived mesoporous carbon. Langmuir 30:900–910

    CAS  PubMed  Google Scholar 

  20. Yang CS, Jang YS, Jeong HK (2014) Bamboo-based activated carbon for supercapacitor applications. Curr Appl Phys 14:1616–1620

    Google Scholar 

  21. Jurewicz K, Babel K (2010) Efficient capacitor materials from active carbons based on coconut shell/melamine precursors. Energy Fuel 24:3429–3435

    CAS  Google Scholar 

  22. Zhang W, Liu T, Mou J, Huang J, Liu M (2020) Ultra-thick electrodes based on activated wood-carbon towards high-performance quasi-solid-state supercapacitors. Phys Chem Chem Phys 22:2073–2080

    CAS  PubMed  Google Scholar 

  23. Phiri J, Dou J, Vuorinen T, Gane PAC, Maloney TC (2019) Highly porous willow wood-derived activated carbon for high-performance supercapacitor electrodes. ACS Omega 4:18108–18117

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Volperts A, Dobele G, Zhurinsh A, Vervikishko D, Shkolnikov E, Ozolinsh J (2017) Wood-based activated carbons for supercapacitor electrodes with a sulfuric acid electrolyte. New Carbon Mater 32:319–326

    Google Scholar 

  25. Liu M-C, Kong L-B, Zhang P, Luo Y-C, Kang L (2012) Porous wood carbon monolith for high-performance supercapacitors. Electrochim Acta 60:443–448

    CAS  Google Scholar 

  26. Wang LP, Schnepp Z, Titirici MM (2013) Rice husk-derived carbon anodes for lithium ion batteries. J Mater Chem A 1:5269–5273

    CAS  Google Scholar 

  27. Sevilla M, Parra JB, Fuertes AB (2013) Assessment of the role of micropore size and N-doping in CO2 capture by porous carbons. ACS Appl Mater Interfaces 5:6360–6368

    CAS  PubMed  Google Scholar 

  28. Jain A, Balasubramanian R, Srinivasan MP (2015) Production of high surface area mesoporous activated carbons from waste biomass using hydrogen peroxide-mediated hydrothermal treatment for adsorption applications. Chem Eng J 273:622–629

    CAS  Google Scholar 

  29. Wang HW, Ren FF, Wang CQ, Yang BB, Bin D, Zhang K, Du YK (2014) Simultaneous determination of dopamine, uric acid and ascorbic acid using a glassy carbon electrode modified with reduced graphene oxide. RSC Adv 4:26895–26901

    CAS  Google Scholar 

  30. Qiang RB, Hu ZG, Yang YY, Li ZM, An N, Ren XY, Hu H, Wu HY (2015) Monodisperse carbon microspheres derived from potato starch for asymmetric supercapacitors. Electrochim Acta 167:303–310

    CAS  Google Scholar 

  31. He YB, Bai YL, Yang XF, Zhang JY, Kang LP, Xu H, Shi F, Lei ZB, Liu ZH (2016) Holey graphene/polypyrrole nanoparticle hybrid aerogels with three-dimensional hierarchical porous structure for high performance supercapacitor. J Power Sources 317:10–18

    CAS  Google Scholar 

  32. Wang HJ, Sun XX, Liu ZH, Lei ZB (2014) Creation of nanopores on graphene planes with MgO template for preparing high-performance supercapacitor electrodes. Nanoscale 6:6577–6584

    CAS  PubMed  Google Scholar 

  33. Lei ZB, Lu L, Zhao XS (2012) The electrocapacitive properties of graphene oxide reduced by urea. Energy Environ Sci 5:6391–6399

    CAS  Google Scholar 

  34. Lei ZB, Christov N, Zhao XS (2011) Intercalation of mesoporous carbon spheres between reduced graphene oxide sheets for preparing high-rate supercapacitor electrodes. Energy Environ Sci 4:1866–1873

    CAS  Google Scholar 

  35. Lei ZB, Shi FH, Lu L (2012) Incorporation of MnO2-coated carbon nanotubes between graphene sheets as supercapacitor electrode. ACS Appl Mater Interfaces 4:1058–1064

    CAS  PubMed  Google Scholar 

  36. Lei ZB, Sun XX, Wang HJ, Liu ZH, Zhao XS (2013) Platelet CMK-5 as an excellent mesoporous carbon to enhance the pseudocapacitance of polyaniline. ACS Appl Mater Interfaces 5:7501–7508

    CAS  PubMed  Google Scholar 

  37. Lei ZB, Zhang JT, Zhao XS (2012) Ultrathin MnO2 nanofibers grown on graphitic carbon spheres as high-performance asymmetric supercapacitor electrodes. J Mater Chem 22:153–160

    CAS  Google Scholar 

  38. De B, Kuila T, Kim NH, Lee JH (2017) Carbon dot stabilized copper sulphide nanoparticles decorated graphene oxide hydrogel for high performance asymmetric supercapacitor. Carbon 122:247–257

    CAS  Google Scholar 

  39. Bai X, Liu Q, Liu JY, Gao Z, Zhang HS, Chen RR, Li ZS, Li R (2017) All-solid state asymmetric supercapacitor based on NiCoAl layered double hydroxide nanopetals on robust 3D graphene and modified mesoporous carbon. Chem Eng J 328:873–883

    CAS  Google Scholar 

  40. Groen JC, Peffer LAA, Pérez-Ramırez J (2003) Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis. Microporous Mesoporous Mater 60:1–17

    CAS  Google Scholar 

  41. Guo YP, Yang SF, Yu KF, Zhao JZ, Wang ZC, Xu HD (2002) The preparation and mechanism studies of rice husk based porous carbon. Mater Chem Phys 74:320–323

    CAS  Google Scholar 

  42. Wang JC, Kaskel S (2012) KOH activation of carbon-based materials for energy storage. J Mater Chem 22:23710–23725

    CAS  Google Scholar 

  43. El-Hendawy ANA (2009) An insight into the KOH activation mechanism through the production of microporous activated carbon for the removal of Pb2+ cations. Appl Surf Sci 255:3723–3730

    CAS  Google Scholar 

  44. Liu Y, Wang YZ, Zhang GX, Liu W, Wang DH, Dong YG (2016) Preparation of activated carbon from willow leaves and evaluation in electric double-layer capacitors. Mater Lett 176:60–63

    CAS  Google Scholar 

  45. Cao YH, Wang KL, Wang XM, Gu ZG, Fan QH, Gibbons W, Hoefemeyer JD, Kharel PR, Shrestha M (2016) Hierarchical porous activated carbon for supercapacitor derived from corn stalk core by potassium hydroxide activation. Electrochim Acta 212:839–847

    CAS  Google Scholar 

  46. Wang K, Zhao N, Lei SW, Yan R, Tian XD, Wang JZ, Song Y (2015) Promising biomass-based activated carbons derived from willow catkins for high performance supercapacitors. Electrochim Acta 166:1–11

    CAS  Google Scholar 

  47. Cai YJ, Luo Y, Xiao Y, Zhao X, Liang YR, Hu H, Dong HW (2016) Facile synthesis of three-dimensional heteroatom-doped and hierarchical egg-box-like carbons derived from Moringa oleifera branches for high-performance supercapacitors. ACS Appl Mater Interfaces 8:33060–33071

    CAS  PubMed  Google Scholar 

  48. Jain A, Xu C, Jayaraman S, Balasubramanian R, Lee JY, Srinivasan MP (2015) Mesoporous activated carbons with enhanced porosity by optimal hydrothermal pre-treatment of biomass for supercapacitor applications. Microporous Mesoporous Mater 218:55–61

    CAS  Google Scholar 

  49. Xuan HQ, Lin GX, Wang F, Liu JY, Dong XP, Xi FN (2017) Preparation of biomass-activated porous carbons derived from torreya grandis shell for high-performance supercapacitor. J Solid State Electrochem 21:1–9

    Google Scholar 

  50. Cheng YF, Liang BQ, Huang YJ, Wang YM, Chen JC, Wei DQ, Feng YJ, Jia DC, Zhou Y (2018) Molten salt synthesis of nitrogen and oxygen enriched hierarchically porous carbons derived from biomass via rapid microwave carbonization for high voltage supercapacitors. Appl Surf Sci 439:712–723

    CAS  Google Scholar 

  51. Zhu XQ, Yu S, Xu KT, Zhang Y, Zhang LM, Lou GB, Wu YT, Zhu EH, Chen H, Shen ZH, Bao BF, Fu SY (2018) Sustainable activated carbons from dead ginkgo leaves for supercapacitor electrode active materials. Chem Eng Sci 181:36–45

    CAS  Google Scholar 

  52. Wang YL, Xuan HQ, Lin GX, Wang F, Chen Z, Dong XP (2016) A melamine-assisted chemical blowing synthesis of N-doped activated carbon sheets for supercapacitor application. J Power Sources 319:262–270

    CAS  Google Scholar 

Download references

Funding

The funding for this work was provided by the National Natural Science Foundation of China (21203167) and the New-shoot Talents Porgram of Zhejiang Province and Zhejiang Normal University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Jiang or Gengshen Hu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 2656 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, F., Chen, Y., Jiang, W. et al. Porous carbons derived from potato for high-performancesupercapacitors. Ionics 26, 6319–6329 (2020). https://doi.org/10.1007/s11581-020-03759-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03759-3

Keywords

Navigation