Skip to main content
Log in

Nanostructured MnCo2O4 as a high-performance electrode for supercapacitor application

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this work, the MnCo2O4 nanorods are prepared by a simple hydrothermal route using urea as both a stabilizing and structure-directing agent for supercapacitor application. The morphological features of the prepared materials were characterized by a scanning electron microscope (SEM) and transmission electron microscope (TEM). The chemical and the crystal structure were studied using Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) analysis. The morphological analysis showed rod-like structures with a diameter of 50–60 nm and length of 1–2 μm respectively. The XRD pattern showed that the particles are crystalline and belong to the cubic spinel structure. The chemical composition was inferred from the XPS analysis. The formation of metal-oxygen bond is inferred using FTIR, and BET showed a high surface area of 41.80 m2g−1. The electrochemical characterization of MnCo2O4 nanorods was performed in 2 M KOH solution using cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and impedance analysis. The CV studies showed a pseudocapacitance behaviour of the electrode, and the GCD studies revealed a specific capacitance of 187.5 Fg−1 at a current density of 0.25 Ag−1. The electrode exhibited good cyclic stability by retaining 90% of the initial value after 5000 cycles. The specific capacitance was also estimated from the impedance analysis and the pseudocapacitive nature of the MnCo2O4 electrode was analysed. Further, the fabricated asymmetric supercapacitor (ACǁ MnCo2O4 nanorods) provides the specific capacitance of 76 Fg−1 at a current density of 0.25 Ag−1. The results indicate that the MnCo2O4 can be a promising candidate for supercapacitor application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Gur TM (2018) Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energy Environ Sci 11:2696–2767

    Google Scholar 

  2. Gonzalez A, Goikolea E, Barrena JA, Mysyk R (2016) Review on supercapacitors: technologies and materials. Renew Sust Energy Rev 58:1189–1206

    CAS  Google Scholar 

  3. Sharma K, Arora A, Tripathi SK (2019) Review of supercapacitors: materials and devices. J Energy Storage 21:801–825

    CAS  Google Scholar 

  4. Girija TC, Sangaranarayanan MV (2006) Polyaniline-based nickel electrodes for electrochemical supercapacitors—Influence of Triton X-100. J Power Sources 159:1519–1526

    CAS  Google Scholar 

  5. Zhang H, Hu Z, Li M, Hu L, Jiao S (2014) A high-performance supercapacitor based on a polythiophene/multiwalled carbon nanotube composite by electropolymerization in an ionic liquid microemulsion. J Mater Chem A 2:17024–17030

    CAS  Google Scholar 

  6. Liu Y, Xu N, Chen W, Wang X, Sun C, Su Z (2018) Supercapacitor with high cycling stability through electrochemical deposition of metal-organic framework s/polypyrrole positive electrode. Dalton Trans 47:13472–13478

    CAS  PubMed  Google Scholar 

  7. Amir FZ, Pham VH, Dickerson JH (2015) Facile synthesis of ultra-small ruthenium oxide nanoparticles anchored on reduced graphene oxide nanosheets for high-performance supercapacitors. RSC Adv 5:67638–67645

    CAS  Google Scholar 

  8. Jang GS, Ameen S, Akhtar MS, Shin HS (2018) Cobalt oxide nanocubes as electrode material for the performance evaluation of electrochemical supercapacitor. Ceram Int 44:588–595

    CAS  Google Scholar 

  9. Nithya VD, Arul NS (2016) Progress and development of Fe3O4 electrodes for supercapacitors. J Mater Chem A 4:10767–10778

    CAS  Google Scholar 

  10. Minakshi M, Visbal H, Mitchell DR, Fichtner M (2018) Bio-waste chicken eggshells to store energy. Dalton Trans 47:16828–16834

    CAS  PubMed  Google Scholar 

  11. Minakshi M, Higley S, Baur C, Mitchell DR, Jones RT, Fichtner M (2019) Calcined chicken egg shell electrode for battery and supercapacitor applications. RSC Adv 9:26981–26995

    CAS  Google Scholar 

  12. Haripriya M, Sivasubramanian R, Ashok AM, Hussain S, Amarendra G (2019) Hydrothermal synthesis of NiCo2O4–NiO nanorods for high performance supercapacitors. J Mater Sci: Mater Electron 30:7497–7506

    CAS  Google Scholar 

  13. Gao X, Wang W, Bi J, Chen Y, Hao X, Sun X, Zhang J (2019) Morphology-controllable preparation of NiFe2O4 as high performance electrode material for supercapacitor. Electrochim Acta 296:181–189

    CAS  Google Scholar 

  14. Sahoo S, Zhang S, Shim JJ (2016) Porous ternary high performance supercapacitor electrode based on reduced graphene oxide, NiMn2O4, and polyaniline. Electrochim Acta 216:386–396

    CAS  Google Scholar 

  15. Wang J, Chang J, Wang L, Hao J (2018) One-step and low-temperature synthesis of CoMoO4 nanowire arrays on Ni foam for asymmetric supercapacitors. Ionics 24:3967–3973

    CAS  Google Scholar 

  16. Jayasubramaniyan S, Balasundari S, Rayjada PA, Kumar RA, Satyanarayana N, Muralidharan P (2018) Enhanced electrochemical performance of MnCo2O4 nanorods synthesized via microwave hydrothermal method for supercapacitor applications. J Mater Sci: Mater Electron 29:21194–21204

    CAS  Google Scholar 

  17. Saravanakumar B, Wang X, Zhang W, Xing L, Li W (2019) Holey two dimensional manganese cobalt oxide nanosheets as a high-performance electrode for supercapattery. Chem Eng J 373:547–555

    CAS  Google Scholar 

  18. Cai N, Fu J, Chan V, Liu M, Chen W, Wang J, Zeng H, Yu F (2019) MnCo2O4@ nitrogen-doped carbon nanofiber composites with meso-microporous structure for high-performance symmetric supercapacitors. J Alloys Comp 782:251–262

    CAS  Google Scholar 

  19. Dong Y, Wang Y, Xu Y, Chen C, Wang Y, Jiao L, Yuan H (2017) Facile synthesis of hierarchical nanocage MnCo2O4 for high performance supercapacitor. Electrochim Acta 225:39–46

    CAS  Google Scholar 

  20. Gopi CV, Venkata-Haritha M, Kim SK, Prabakar K, Kim HJ (2016) Flower-like ZnO@ MnCo2O4 nanosheet structures on nickel foam as novel electrode material for high-performance supercapacitors. RSC Adv 6:102961–102967

    CAS  Google Scholar 

  21. Hao P, Zhao Z, Li L, Tuan CC, Li H, Sang Y, Jiang H, Wong CP, Liu H (2015) The hybrid nanostructure of MnCo2O4.5 nanoneedle/carbon aerogel for symmetric supercapacitors with high energy density. Nanoscale 7:14401–14412

    CAS  PubMed  Google Scholar 

  22. Krishnan SG, Ab Rahim MH, Jose R (2016) Synthesis and characterization of MnCo2O4 cuboidal microcrystals as a high performance pseudocapacitors electrode. J Alloys Comp 656:707–713

    CAS  Google Scholar 

  23. Lee HM, Gopi CV, Rana PJ, Vinodh R, Kim S, Padma R, Kim HJ (2018) Hierarchical nanostructured MnCo2O4–NiCo2O4 composites as innovative electrodes for supercapacitor applications. New J Chem 42:17190–17194

    CAS  Google Scholar 

  24. Li F, Li G, Chen H, Jia JQ, Dong F, Hu YB, Shang ZG, Zhang YX (2015) Morphology and crystallinity-controlled synthesis of manganese cobalt oxide/manganese dioxides hierarchical nanostructures for high-performance supercapacitors. J Power Sources 296:86–91

    CAS  Google Scholar 

  25. Li J, Xiong D, Wang L, Hirbod MK, Li X (2019) High-performance self-assembly MnCo2O4 nanosheets for asymmetric supercapacitors. J Energy Chem 37:66–72

    Google Scholar 

  26. Maile NC, Shinde SK, Patil RT, Fulari AV, Koli RR, Kim DY, Lee DS, Fulari VJ (2019) Structural and morphological changes in binder-free MnCo2O4 electrodes for supercapacitor applications: effect of deposition parameters. J Mater Sci: Mater Electron 3:3729–3743

    Google Scholar 

  27. Nagamuthu S, Vijayakumar S, Lee SH, Ryu KS (2016) Hybrid supercapacitor devices based on MnCo2O4 as the positive electrode and FeMn2O4 as the negative electrode. App Surf Sci 390:202–208

    CAS  Google Scholar 

  28. Li W, Xu K, Song G, Zhou X, Zou R, Yang Y, Chen Z, Hu J (2014) Facile synthesis of porous MnCo2O4 hierarchical architectures for high-rate supercapacitors. CrystEngComm. 16:2335–2339

    CAS  Google Scholar 

  29. Li M, Yang W, Li J, Feng M, Li W, Li H, Yu Y (2018) Porous layered stacked MnCo2O4 cubes with enhanced electrochemical capacitive performance. Nanoscale 10:2218–2225

    CAS  PubMed  Google Scholar 

  30. Mohamed SG, Hung TF, Chen CJ, Chen CK, Hu SF, Liu RS (2014) Efficient energy storage capabilities promoted by hierarchical MnCo2O4 nanowire-based architectures. RSC Adv 4:17230–17235

    CAS  Google Scholar 

  31. Akhtar MA, Sharma V, Biswas S, Chandra A (2016) Tuning porous nanostructures of MnCo2O4 for application in supercapacitors and catalysis. RSC Adv 6:96296–96305

    CAS  Google Scholar 

  32. Pettong T, Iamprasertkun P, Krittayavathananon A, Sukha P, Sirisinudomkit P, Seubsai A, Chareonpanich M, Kongkachuichay P, Limtrakul J, Sawangphruk M (2016) High-performance asymmetric supercapacitors of MnCo2O4 nanofibers and N-doped reduced graphene oxide aerogel. ACS App Mater Interfaces 8:34045–34053

    CAS  Google Scholar 

  33. Liu S, Hui KS, Hui KN (2015) 1 D hierarchical MnCo2O4 nanowire@ MnO2 sheet core–shell arrays on graphite paper as superior electrodes for asymmetric supercapacitors. ChemNanoMat 1:593–602

    CAS  Google Scholar 

  34. Gao Y, Xia Y, Wan H, Xu X, Jiang S (2019) Enhanced cycle performance of hierarchical porous sphere MnCo2O4 for asymmetric supercapacitors. Electrochim Acta 30:294–303

    Google Scholar 

  35. Hu X, Nan H, Liu M, Liu S, An T, Tian H (2019) Battery-like MnCo2O4 electrode materials combined with active carbon for hybrid supercapacitors. Electrochim Acta 306:599–609

    CAS  Google Scholar 

  36. Shanmugavadivel M, Dhayabaran VV, Subramanian M (2019) Fabrication of high energy and high power density supercapacitor based on MnCo2O4 nanomaterial. J Phys Chem Solids 133:15–20

    CAS  Google Scholar 

  37. Venkatachalam V, Alsalme A, Alghamdi A, Jayavel R (2015) High performance electrochemical capacitor based on MnCo2O4 nanostructured electrode. J Electroanal Chem 756:94–100

    CAS  Google Scholar 

  38. Che H, Wang Y, Mao Y (2016) Novel flower-like MnCo2O4 microstructure self-assembled by ultrathin nanoflakes on the microspheres for high-performance supercapacitors. J Alloys Comp 680:586–594

    CAS  Google Scholar 

  39. Huang T, Zhao C, Wu L, Lang X, Liu K, Hu Z (2017) 3D network-like porous MnCo2O4 by the sucrose-assisted combustion method for high-performance supercapacitors. Ceram Int 43:1968–1974

    CAS  Google Scholar 

  40. Hui KN, San Hui K, Tang Z, Jadhav VV, Xia QX (2016) Hierarchical chestnut-like MnCo2O4 nanoneedles grown on nickel foam as binder-free electrode for high energy density asymmetric supercapacitors. J Power Sources 330:195–203

    CAS  Google Scholar 

  41. Shanmugavani A, Selvan RK (2016) Microwave assisted reflux synthesis of NiCo2O4 /NiO composite: fabrication of high performance asymmetric supercapacitor with Fe2O3. Electrochim Acta 189:283–294

    CAS  Google Scholar 

  42. Krittayavathananon A, Pettong T, Kidkhunthod P, Sawangphruk M (2017) Insight into the charge storage mechanism and capacity retention fading of MnCo2O4 used as supercapacitor electrode. Electrochim Acta 258:1008–1015

    CAS  Google Scholar 

  43. Yu Z, Tetard L, Zhai L, Thomas J (2015) Supercapacitor electrode materials:nanostructures from 0 to 3 dimensions. Energy Environ Sci 8:702–730

    CAS  Google Scholar 

  44. Minakshi M, Mitchell DR, Munnangi AR, Barlow AJ, Fichtner M (2018) New insights into the electrochemistry of magnesium molybdate hierarchical architectures for high performance sodium devices. Nanoscale 27:13277–13288

    Google Scholar 

  45. Minakshi M, Barmi M, Mitchell DRG, Barlow AJ, Fichtner M (2014) Effect of oxidizer in the synthesis of NiO anchored nanostructure nickel molybdate for sodium ion battery. Mater Today Energy 10:1–14

    Google Scholar 

  46. Lv J, Zheng J, Li S, Chen L, Wang A, Feng J (2014) Facile synthesis of Pt-Pd nanodendrites and their superior electrocatalytic activity. J. Mater. Chem. A 2:4384–4390

    CAS  Google Scholar 

  47. Mary A, Christina J, Chandra Bose A (2018) Surfactant assisted ZnCo2O4 nanomaterial for supercapacitor application. Appl Surf Sci 449:105–112

    CAS  Google Scholar 

  48. Ren L, Chen J, Wang X, Zhi M, Wu J, Zhang X (2015) Facile synthesis of flower-like CoMn2O4 microspheres for electrochemical supercapacitors. RSC Adv 5:30963–30969

    CAS  Google Scholar 

  49. Padmanathan N, Selladurai S (2014) Mesoporous MnCo2O4 spinel oxide nanostructure synthesized by solvothermal technique for Supercapacitor. Ionics 4:479–487

    Google Scholar 

  50. Sahoo S, Naik KK, Rout CS (2015) Electrodeposition of spinel MnCo2O4 nanosheets for supercapacitor applications. Nanotech 45:455401–455409

    Google Scholar 

  51. Wang K, Xu J, Lu A, Shi Y, Lin Z (2016) Coordination polymer template synthesis of hierarchical MnCo2O4.5 and MnNi6O8 nanoparticles for electrochemical capacitors electrode. Solid State Sci 58:70–79

    CAS  Google Scholar 

  52. Macdonald JR, Johnson WB (2005) Fundamentals of Impedance spectroscopy: Theory, experiment, and applications. Wiley Publication pp:1–26

  53. Taberna PL, Simon P, Fauvarque JF (2003) Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors. J Electrochem Soc 150:A292–A300

    CAS  Google Scholar 

  54. Xu Y, Wang X, An C, Wang Y, Jiao L, Yuan H (2014) Facile synthesis route of porous MnCo2O4 and CoMn2O4 nanowires and their excellent electrochemical properties in supercapacitors. J Mat Chem A 2:16480–16488

    CAS  Google Scholar 

  55. Ramya R, Sangaranarayanan MV (2008) Analysis of polypyrrole-coated stainless steel electrodes—estimation of specific capacitances and construction of equivalent circuits. J Chem Sci 120:25–31

    CAS  Google Scholar 

  56. Hasyim MR, Rajagopalan R (2020) Prediction of discharge performance of pseudocapacitors using their impedance characterstics. J Electrochem Soc 167:013536–013538

    Google Scholar 

  57. Eftekhari A (2019) Metrics for fast supercapacitors as energy storage devices. ACS Sustainable Chem Eng 7:3688–3691

    CAS  Google Scholar 

  58. Conway BE (1999) Electrochemical supercapacitors: scientific, fundamental and technological applications. Kluwer Academic/Plenum publishers, UK

    Google Scholar 

  59. Nilson RH, Brumbach MT, Bunker BC (2011) Modelling the electrochemical impedance spectra of electroactive pseudocapacitive materials. J Electrochem Soc 158:A678–A688

    CAS  Google Scholar 

  60. Wu H, Lou Z, Yang H, Shen G (2015) A flexible spiral-type supercapacitor based on ZnCo2O4 nanorod electrodes. Nanoscale 7:1921–1926

    CAS  PubMed  Google Scholar 

  61. Gu S, Lou Z, Ma X, Shen G (2015) CuCo2O4 oxide nanowires grown on Ni wire for high performance flexible fiber supercapacitor. Chemelectrochem 2:1042–1047

    CAS  Google Scholar 

  62. Aswathy R, Kesavan T, Kumaran KT, Raghupathy P (2015) Octahedral high voltage LiNi0.5Mn1.5O4 spinel cathode : enhanced capacity retention of hybrid aqueous capacitors with nitrogen doped graphene. J Mater Chem A 3:12386–12395

    CAS  Google Scholar 

  63. Xu J, Sun Y, Lu M, Wang L, Zhang J, Tao E, Qian J, Liu X (2018) Fabrication of the porous MnCo2O4 nanorod arrays on Ni foam as an advanced electrode for asymmetric supercapacitors. Acta Mater 152:162–174

    CAS  Google Scholar 

  64. Xu J, Sun Y, Lu M, Wang L, Zhang J, Liu X (2019) One-step electrodeposition fabrication of Ni3S2 nanosheet arrays on Ni foam as an advanced electrode for asymmetric supercapacitors. Sci China Mater 5:699–710

    Google Scholar 

  65. Elkholy AE, Heakal FE, Allam NK (2017) Nanostructred spinel manganese cobalt ferrite for high performance supercapacitors. RSC Adv 7:51888–51895

    CAS  Google Scholar 

  66. Gao Z, Song N, Zhang Y, Li X (2015) Cotton textiles enabled all solid-state flexible supercapacitors. RSC Adv 5:15438–15447

    CAS  Google Scholar 

  67. Wang FX, Xiao SY, Zhu YS, Chang Z, Hu CL, Wu YP, Holze R (2014) Spinel LiMn2O4 nanohybrid as high capacitance positive electrode material for supercapacitors. J Power Sources 246:19–23

    CAS  Google Scholar 

Download references

Acknowledgement

The authors wish to acknowledge the facilities provided by the Management, PSG Sons & Charities, Coimbatore, India.

Funding

The authors thank the financial support provided by the UGC DAE CSR (CSR-KN/CRD-86/2019-20/1579) India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Sivasubramanian.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 988 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haripriya, M., Ashok, A.M., Hussain, S. et al. Nanostructured MnCo2O4 as a high-performance electrode for supercapacitor application. Ionics 27, 325–337 (2021). https://doi.org/10.1007/s11581-020-03788-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03788-y

Keywords

Navigation