Skip to main content

Advertisement

Log in

Facile synthesis of coral-like Pt nanoparticles/MXene (Ti3C2Tx) with efficient hydrogen evolution reaction activity

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Exploring efficient catalysts for hydrogen evolution reaction (HER) is one of focus points of energy research. In this work, a series of MXene/Pt-x (wherein, x is the adding amount of 6.2 mM H2PtCl6 solution) nanomaterials were fabricated via a facile synthesis method, in which coral-like Pt nanoparticles (NPs) were deposited on Ti3C2Tx MXene. The Pt-loading amounts on the MXene could be simply controlled by varying the adding amounts of H2PtCl6, which would influence the sizes of Pt NPs on the MXene. The optimum catalytic activity was obtained on the MXene/Pt-3 with a low overpotential of 302 mV versus reversible hydrogen electrode (RHE) at 10 mA cm−2, which was about 84 mV less than MXene/Pt-2. The efficiently electrocatalytic HER activity of MXene/Pt-x nanomaterials was due to the electron transfer from MXene to Pt NPs. The HER performance of the MXene/Pt-x nanomaterials was influenced by both Pt-loading amounts and Pt particle sizes. This work expands future applications of MXene-based nanomaterials in clean energy conversion reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Morales-Guio CG, Stern LA, Hu X (2014) Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem Soc Rev 43:6555–6569. https://doi.org/10.1039/C3CS60468C

    Article  CAS  PubMed  Google Scholar 

  2. You B, Sun Y (2018) Innovative strategies for electrocatalytic water splitting. Acc Chem Res 51:1571–1580. https://doi.org/10.1021/acs.accounts.8b00002

    Article  CAS  PubMed  Google Scholar 

  3. Yin H, Zhao S, Zhao K, Muqsit A, Tang H, Chang L, Zhao H, Gao Y, Tang Z (2015) Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity. Nat Commun 6:6430. https://doi.org/10.1038/ncomms7430

    Article  CAS  PubMed  Google Scholar 

  4. Chao T, Luo X, Chen W et al (2017) Atomically dispersed copper–platinum dual sites alloyed with palladium nanorings catalyze the hydrogen evolution reaction. Angew Chem 129:16263–16267. https://doi.org/10.1002/anie.201709803

    Article  CAS  Google Scholar 

  5. Lai S, Fu C, Chen Y, Yu X, Lai X, Ye C, Hu J (2015) Pt-content-controlled synthesis of Pd nanohollows/Pt nanorods core/shell composites with enhanced electrocatalytic activities for the methanol oxidation reaction. J Power Sources 274:604–610. https://doi.org/10.1016/j.jpowsour.2014.10.063

    Article  CAS  Google Scholar 

  6. Ye R, Zhang Y, Chen Y, Tang L, Wang Q, Wang Q, Li B, Zhou X, Liu J, Hu J (2018) Controlling shape and plasmon resonance of Pt-etched au@Ag nanorods. Langmuir 34:5719–5727. https://doi.org/10.1021/acs.langmuir.8b00328

    Article  CAS  PubMed  Google Scholar 

  7. Xie J, Feng X, Hu J, Chen X, Li A (2010) Al3+-directed self-assembly and their electrochemistry properties of three-dimensional dendriform horseradish peroxidase/polyacrylamide/platinum/single-walled carbon nanotube composite film. Biosens Bioelectron 25:1186–1192. https://doi.org/10.1016/j.bios.2009.10.007

    Article  CAS  PubMed  Google Scholar 

  8. Zhong X, Qin Y, Chen X, Xu W, Zhuang G, Li X, Wang J (2016) PtPd alloy embedded in nitrogen-rich graphene nanopores: high-performance bifunctional electrocatalysts for hydrogen evolution and oxygen reduction. Carbon 114:740–748. https://doi.org/10.1016/j.carbon.2016.12.004

    Article  CAS  Google Scholar 

  9. Dehcheshmeh MM, Shervedani RK, Torabi M (2019) Construction of Ni@Pt/N-doped nanoporous carbon, derived from pyrolysis of nickel metal organic framework, and application for HER in alkaline and acidic solutions. Electrochim Acta 327:134895. https://doi.org/10.1016/j.electacta.2019.134895

    Article  CAS  Google Scholar 

  10. Yan H, Lin Y, Wu H, Zhang W, Sun Z, Cheng H, Liu W, Wang C, Li J, Huang X, Yao T, Yang J, Wei S, Lu J (2017) Bottom-up precise synthesis of stable platinum dimers on graphene. Nat Commun 8:1070. https://doi.org/10.1038/s41467-017-01259-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kunhiraman AK (2019) Hydrogen evolution reaction catalyzed by platinum nanoislands decorated on three-dimensional nanocarbon hybrid. Ionics 25:3787–3797. https://doi.org/10.1007/s11581-019-02933-6

    Article  CAS  Google Scholar 

  12. Kurra N, Ahmed B, Gogotsi Y, Alshareef HN (2016) MXene-on-paper coplanar microsupercapacitors. Adv Energy Mater 6:1601372. https://doi.org/10.1002/aenm.201601372

    Article  CAS  Google Scholar 

  13. Zhou L, Wu F, Yu J, Deng Q, Zhang F, Wang G (2017) Titanium carbide (Ti3C2Tx) MXene: a novel precursor to amphiphilic carbide-derived graphene quantum dots for fluorescent ink, light-emitting composite and bioimaging. Carbon 118:50–57. https://doi.org/10.1016/j.carbon.2017.03.023

    Article  CAS  Google Scholar 

  14. Xie X, Zhao MQ, Anasori B, Maleski K, Ren CE, Li J, Byles BW, Pomerantseva E, Wang G, Gogotsi Y (2016) Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices. Nano Energy 26:513–523. https://doi.org/10.1016/j.nanoen.2016.06.005

    Article  CAS  Google Scholar 

  15. Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Gogotsi Y, Barsoum MW (2012) Two-dimensional transition metal carbides. ACS Nano 6:1322–1331. https://doi.org/10.1021/nn204153h

    Article  CAS  PubMed  Google Scholar 

  16. Ng VMH, Huang H, Zhou K, Lee PS, Que W, Xu JZ, Kong LB (2017) Recent progress in layered transition metal carbides and/or nitrides (MXenes) and their composites: synthesis and applications. J Mater Chem A 5:3039–3068. https://doi.org/10.1039/c6ta06772g

    Article  Google Scholar 

  17. Halim J, Lukatskaya MR, Cook KM, Lu J, Smith CR, Naslund LA, May SJ, Gogotsi Y, Eklund P, Barsoum MW (2014) Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chem Mater 26:2374–2381. https://doi.org/10.1021/cm500641a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Anasori B, Xie Y, Beidaghi M, Lu J, Hosler BC, Hultman L, Kent PRC, Gogotsi Y, Barsoum MW (2015) Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano 9:9507–9516. https://doi.org/10.1021/acsnano.5b03591

    Article  CAS  PubMed  Google Scholar 

  19. Naguib M, Gogotsi Y (2015) Synthesis of two-dimensional materials by selective extraction. Acc Chem Res 48:128–135. https://doi.org/10.1021/ar500346b

    Article  CAS  PubMed  Google Scholar 

  20. Ma TY, Cao JL, Jaroniec M, Qiao SZ (2016) Interacting carbon nitride and titanium carbide nanosheets for high-performance oxygen evolution. Angew Chem Int Ed 55:1138–1142. https://doi.org/10.1002/anie.201509758

    Article  CAS  Google Scholar 

  21. Wu X, Wang Z, Yu M, Xiu L, Qiu J (2017) Stabilizing the MXenes by carbon nanoplating for developing hierarchical nanohybrids with efficient lithium storage and hydrogen evolution capability. Adv Mater 29:1607017. https://doi.org/10.1002/adma.201607017

    Article  CAS  Google Scholar 

  22. Wang X, Li H, Lin S, Ding W, Zhu X, Sheng Z, Wang H, Zhu X, Sun Y (2020) 2D/2D 1T-MoS2/Ti3C2 MXene heterostructure with excellent supercapacitor performance. Adv Funct Mater 30:0190302. https://doi.org/10.1002/adfm.201910302

    Article  CAS  Google Scholar 

  23. Xue C, He Y, Liu Y, Saha P, Cheng Q (2019) Controlled synthesis of alkalized Ti3C2 MXene-supported β-FeOOH nanoparticles as anodes for lithium-ion batteries. Ionics 25:3069–3077. https://doi.org/10.1007/s11581-019-02901-0

    Article  CAS  Google Scholar 

  24. Gao G, O’Mullane AP, Du A (2016) 2D MXenes: a new family of promising catalysts for the hydrogen evolution reaction. ACS Catal 7:494–500. https://doi.org/10.1021/acscatal.6b02754

    Article  CAS  Google Scholar 

  25. Li Z, Qi Z, Wang S, Ma T, Zhou L, Wu Z, Luan X, Lin FY, Chen M, Miller JT, Xin H, Huang W, Wu Y (2019) In situ formed Pt3Ti nanoparticles on a two-dimensional transition metal carbide (MXene) used as efficient catalysts for hydrogen evolution reactions. Nano Lett 19:5102–5108. https://doi.org/10.1021/acs.nanolett.9b01381

    Article  CAS  PubMed  Google Scholar 

  26. Zhang J, Zhao Y, Guo X, Chen C, Dong CL, Liu RS, Han CP, Li Y, Gofotsi Y, Wang G (2018) Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nature Catalysis 1:985–992. https://doi.org/10.1038/s41929-018-0195-1

    Article  CAS  Google Scholar 

  27. Xie X, Zhang N, Tang ZR, Anpo M, Xu YJ (2018) Ti3C2Tx MXene as a Janus cocatalyst for concurrent promoted photoactivity and inhibited photocorrosion. Appl Catal B Environ 237:43–49. https://doi.org/10.1016/j.apcatb.2018.05.070

    Article  CAS  Google Scholar 

  28. Wang H, Wu Y, Zhang J, Li G, Huang H, Zhang X, Jiang Q (2015) Enhancement of the electrical properties of MXene Ti3C2 nanosheets by post-treatments of alkalization and calcinations. Mater Lett 160:537–540. https://doi.org/10.1016/j.matlet.2015.08.046

    Article  CAS  Google Scholar 

  29. Guo J, Zhao Y, Liu A, Ma T (2019) Electrostatic self-assembly of 2D delaminated MXene (Ti3C2) onto Ni foam with superior electrochemical performance for supercapacitor. Electrochim Acta 305:164–174. https://doi.org/10.1016/j.electacta.2019.03.025

    Article  CAS  Google Scholar 

  30. Guo Y, Zhou X, Wang D, Xu X, Xu Q (2019) Nanomechanical properties of Ti3C2 MXene. Langmuir 35:14481−14485. https://doi.org/10.1021/acs.langmuir.9b02619

  31. An X, Wang W, Wang J, Duan H, Shi J, Yu X (2018) The synergetic effects of Ti3C2 MXene and Pt as co-catalysts for highly efficient photocatalytic hydrogen evolution over g-C3N4. Phys Chem Chem Phys 20:11405–11411. https://doi.org/10.1039/c8cp01123k

    Article  CAS  PubMed  Google Scholar 

  32. Min S, Xue Y, Wang F, Zhang Z, Zhu H (2019) Ti3C2Tx MXene nanosheet-confined Pt nanoparticles efficiently catalyze dye-sensitized photocatalytic hydrogen evolution reaction. Chem Commun 55:10631–10634. https://doi.org/10.1039/c9cc05489h

    Article  CAS  Google Scholar 

  33. Fan G, Li X, Ma Y, Zhang Y, Wu J, Xu B, Sun T, Gao D, Bi J (2017) Magnetic, recyclable PtyCo1-y/Ti3C2X2 (X = O, F) catalyst: a facile synthesis and enhanced catalytic activity for hydrogen generation from the hydrolysis of ammonia borane. New J Chem 41:2793–2799. https://doi.org/10.1039/c6nj02695h

    Article  CAS  Google Scholar 

  34. Xu X, Li X, Gu H, Huang Z, Yan X (2012) A highly active and chemoselective assembled Pt/C(Fe) catalyst for hydrogenation of o-chloronitrobenzene. Appl Catal A Gen 429-430:17–23. https://doi.org/10.1016/j.apcata.2012.03.039

    Article  CAS  Google Scholar 

  35. Liu J, Liu Y, Xu D, Zhu Y, Peng W, Li Y, Zhang F, Fan X (2019) Hierarchical “nanoroll” like MoS2/Ti3C2Tx hybrid with high electrocatalytic hydrogen evolution activity. Appl Catal B Environ 241:89–94. https://doi.org/10.1016/j.apcatb.2018.08.083

    Article  CAS  Google Scholar 

  36. Xie X, Jiang YF, Yuan CZ, Jiang N, Zhao SJ, Jia L, Xu AW (2017) Ultralow Pt loaded molybdenum dioxide/carbon nanotubes for highly efficient and durable hydrogen evolution reaction. J Phys Chem C 121:24979–24986. https://doi.org/10.1021/acs.jpcc.7b08283

    Article  CAS  Google Scholar 

  37. Huang Y, Li K, Lin Y, Tong Y, Liu H (2018) Enhanced efficiency of electron–hole separation in Bi2O2CO3 for photocatalysis via acid treatment. ChemCatChem 10:1982–1987. https://doi.org/10.1002/cctc.201800101

    Article  CAS  Google Scholar 

Download references

Code availability

Not applicable.

Funding

This work was supported by the National Natural Science Foundation of China (nos. 21673081, 21908253, 21802173 and 21405182), Key Project of Guangdong Natural Science Foundation (2018B030311002), Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme (2017), and Natural Science Foundation of Guangdong Province (2019A1515011117, 2018A030310301).

Author information

Authors and Affiliations

Authors

Contributions

Bishan Li and Rongkai Ye contributed equally to this work. The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript. Jianqiang Hu and Pingping Fang supervised the project. Bishan Li, Jianqiang Hu, and Pingping Fang proposed the idea. Bishan Li, Rongkai Ye, Qianyu Wang, and Xiaoqing Liu analyzed the data. Bishan Li, Rongkai Ye, Jianqiang Hu, and Pingping Fang wrote the paper.

Corresponding authors

Correspondence to Pingping Fang or Jianqiang Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Ye, R., Wang, Q. et al. Facile synthesis of coral-like Pt nanoparticles/MXene (Ti3C2Tx) with efficient hydrogen evolution reaction activity. Ionics 27, 1221–1231 (2021). https://doi.org/10.1007/s11581-020-03884-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03884-z

Keywords

Navigation