Skip to main content

Advertisement

Log in

Mo-doped CoP nanosheets as high-performance electrocatalyst for HER and OER

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Transition-metal doping and structural improvement are facile and feasible strategies to obtain highly active catalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Herein, we prepare Mo-CoP with a nanosheet structure via hydrothermal reactions and phosphorization. Taking advantage of the nanosheet array, the good electrocatalytic performance of Co-based materials for HER and excellent performance of Co-based phosphide for OER are fully demonstrated. Mo-CoP requires only 112 and 329.9 mV to achieve a current density of 100 mA/cm2 for HER and OER in 1.0 M KOH, respectively. Furthermore, when it was used as bifunctional electrocatalyst, Mo-CoP could deliver 10 mA/cm2 at a low cell voltage of 1.54 V. It was found that the activity of Mo-CoP could be ascribed to the structure of nanosheet and the synergistic role of two different metal phosphides. The most important is that the introduction of Mo improves the activity of the catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Li Y, Huang H, Chen S, Wang C, Liu A, Ma T (2018) Catal Lett 149:486–495

    Article  Google Scholar 

  2. Zhang J, Wang T, Liu P, Liao Z, Liu S, Zhuang X, Chen M, Zschech E, Feng X (2017) Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat Commun 8:15437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhai P, Zhang Y, Wu Y, Gao J, Zhang B, Cao S, Zhang Y, Li Z, Sun L, Hou J (2020) Engineering active sites on hierarchical transition bimetal oxides/sulfides heterostructure array enabling robust overall water splitting. Nat Commun 11:5462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Du J, Wang L, Bai L, Dang S, Su L, Qin X, Shao G, Colloid Interface J (2019) Sci. 535:75–83

    CAS  Google Scholar 

  5. Xiong Q, Wang Y, Liu P-F, Zheng L-R, Wang G, Yang H-G, Wong P-K, Zhang H, Zhao H (2018) Cobalt Covalent Doping in MoS2to Induce Bifunctionality of Overall Water Splitting. Adv Mater 30:1801450

    Article  Google Scholar 

  6. Wang X, Tong R, Wang Y, Tao H, Zhang Z, Wang H (2016) Surface Roughening of Nickel Cobalt Phosphide Nanowire Arrays/Ni Foam for Enhanced Hydrogen Evolution Activity. ACS Appl Mater Interfaces 8:34270–34279

    Article  CAS  PubMed  Google Scholar 

  7. Pu Z, Zhao J, Amiinu IS, Li W, Wang M, He D, Mu S (2019) A universal synthesis strategy for P-rich noble metal diphosphide-based electrocatalysts for the hydrogen evolution reaction. Energy Environ Sci 12:952–957

    Article  CAS  Google Scholar 

  8. Zhou W, Huang D-D, Wu Y-P, Zhao J, Wu T, Zhang J, Li D-S, Sun C, Feng P, Bu X (2019) Stable Hierarchical Bimetal-Organic Nanostructures as HighPerformance Electrocatalysts for the Oxygen Evolution Reaction. Angew Chem Int Ed 58:4227–4231

    Article  CAS  Google Scholar 

  9. Baek M, Kim G-W, Park T, Yong K (2019) NiMoFe and NiMoFeP as Complementary Electrocatalysts for Efficient Overall Water Splitting and Their Application in PV‐Electrolysis with STH 12.3%. Small 15:1905501

    Article  CAS  Google Scholar 

  10. Lv L, Yang Z, Chen K, Wang C, Xiong Y (2019) 2D Layered Double Hydroxides for Oxygen Evolution Reaction: From Fundamental Design to Application. Adv Energy Mater 9:1803358

    Article  Google Scholar 

  11. Cai Z, Bu X, Wang P, Ho JC, Yang J, Wang X, Mater J (2019) Chem A 7:5069–5089

    CAS  Google Scholar 

  12. Huang C-L, Chuah X-F, Hsieh C-T, Lu S-Y (2019) NiFe Alloy Nanotube Arrays as Highly Efficient Bifunctional Electrocatalysts for Overall Water Splitting at High Current Densities. ACS Appl Mater Interfaces 11:24096–24106

    Article  CAS  PubMed  Google Scholar 

  13. Ganesan P, Sivanantham A, Shanmugam S (2017) Nanostructured Nickel–Cobalt–Titanium Alloy Grown on Titanium Substrate as Efficient Electrocatalyst for Alkaline Water Electrolysis. ACS Appl Mater Interfaces 9:12416–12426

    Article  CAS  PubMed  Google Scholar 

  14. Hu EL, Feng YF, Nai JW, Zhao D, Hu Y, Lou XW (2018) Construction of hierarchical Ni–Co–P hollow nanobricks with oriented nanosheets for efficient overall water splitting. Energy Environ Sci 11:872–880

    Article  CAS  Google Scholar 

  15. Dang Y, He J, Wu T, Yu L, Kerns P, Wen L, Ouyang J, Suib SL (2019) Constructing Bifunctional 3D Holey and Ultrathin CoP Nanosheets for Efficient Overall Water Splitting. ACS Appl Mater Interfaces 11:29879–29887

    Article  CAS  PubMed  Google Scholar 

  16. Cui Z, Ge Y, Chu H, Baines R, Dong P, Tang J, Yang Y, Ajayan PM, Ye M, Shen J, Mater J (2017) Chem A 5:1595–1602

    CAS  Google Scholar 

  17. Hang L, Zhang T, Sun Y, Men D, Lyu X, Zhang Q, Cai W, Li Y, Mater J (2018) Chem A 6:19555–19562

    CAS  Google Scholar 

  18. Wang Y, Sun Y, Yan F, Zhu C, Gao P, Zhang X, Chen Y, Mater J (2018) Chem A 6:8479–8487

    CAS  Google Scholar 

  19. Huang C, Ouyang T, Zou Y, Li N, Liu Z-Q, Mater J (2018) Chem A 6:7420–7427

    CAS  Google Scholar 

  20. Ai L, Su J, Wang M, Jiang J (2018) Bamboo-Structured Nitrogen-Doped Carbon Nanotube Coencapsulating Cobalt and Molybdenum Carbide Nanoparticles: An Efficient Bifunctional Electrocatalyst for Overall Water Splitting. ACS Sustain Chem Eng 6:9912–9920

    Article  CAS  Google Scholar 

  21. Xue Z-H, Su H, Yu Q-Y, Zhang B, Wang H-H, Li X-H, Chen J-S (2017) Janus Co/CoP Nanoparticles as Efficient Mott-Schottky Electrocatalysts for Overall Water Splitting in Wide pH Range. Adv Energy Mater 7:1602355

    Article  Google Scholar 

  22. Li Y, Jia B, Chen B, Liu Q, Cai M, Xue Z, Fan Y, Wang H-P, Su C-Y, Li G (2018) MOF-derived Mn doped porous CoP nanosheets as efficient and stable bifunctional electrocatalysts for water splitting. Dalton Trans 47:14679–14685

    Article  CAS  PubMed  Google Scholar 

  23. Zhang M, Ci S, Li H, Cai P, Xu H, Wen Z (2017) Highly defective porous CoP nanowire as electrocatalyst for full water splitting. Int J Hydrog Energy 42:29080–29090

    Article  CAS  Google Scholar 

  24. Du H, Liu Q, Cheng N, Asiri AM, Sun X, Li CM, Mater J (2014) Chem A 2:14812–14816

    CAS  Google Scholar 

  25. Liu T, Xie L, Yang J, Kong R, Du G, Asiri AM, Sun X, Chen L (2017) Self-Standing CoP Nanosheets Array: A Three-Dimensional Bifunctional Catalyst Electrode for Overall Water Splitting in both Neutral and Alkaline Media. ChemElectroChem 4:1840–1845

    Article  CAS  Google Scholar 

  26. Zhang R, Tang C, Kong R, Du G, Asiri AM, Chen L, Sun X (2017) Al-Doped CoP nanoarray: a durable water-splitting electrocatalyst with superhigh activity. Nanoscale 9:4793–4800

    Article  CAS  PubMed  Google Scholar 

  27. Liu X, Wei B, Su R, Zhao C, Dai D, Ma X, Xu L (2019) Mo‐Doped Cobalt Phosphide Nanosheets for Efficient Hydrogen Generation in an Alkaline Media. Energy Technology 7:1900021

    Article  Google Scholar 

  28. Liu Z, Yu X, Xue H, Feng L, Mater J (2019) Chem A 7:13242–13248

    CAS  Google Scholar 

  29. Yi T-F, Pan J-J, Wei T-T, Li Y, Cao G (2020) NiCo2S4-based nanocomposites for energy storage in supercapacitors and batteries. Nano Today 33:100894

    Article  CAS  Google Scholar 

  30. Yi TF, Qu JP, Lai X, Han X, Chang H, Zhu YR (2021) Toward high-performance Li storage anodes: design and construction of spherical carbon-coated CoNiO2 materials. Materials Today Chemistry 19:100407

    Article  CAS  Google Scholar 

  31. Yi T-F, Chang H, Wei T-T, Qi S-Y, Li Y, Zhu Y-R (2021) Approaching high-performance electrode materials of ZnCo2S4 nanoparticle wrapped carbon nanotubes for supercapacitors. J Mater 7:563–576

    Google Scholar 

  32. Yi T-F, Qiu L-Y, Mei J, Qi S-Y, Cui P, Luo S, Zhu Y-R, Xie Y, He Y-B (2020) Porous spherical NiO@NiMoO4@PPy nanoarchitectures as advanced electrochemical pseudocapacitor materials. Sci Bull 65:546–556

    Article  CAS  Google Scholar 

  33. Huang X, Xu X, Luan X, Cheng D (2020) CoP nanowires coupled with CoMoP nanosheets as a highly efficient cooperative catalyst for hydrogen evolution reaction. Nano Energy 68:104332

    Article  CAS  Google Scholar 

  34. Han L, Yu TW, Lei W, Liu WW, Feng K, Ding YL, Jiang GP, Xu P, Chen ZW, Mater J (2017) Chem A 5:16568–16572

    CAS  Google Scholar 

  35. Hao J, Yang W, Zhang Z, Tang J (2015) Metal–organic frameworks derived CoxFe1−xP nanocubes for electrochemical hydrogen evolution. Nanoscale 7:11055–11062

    Article  CAS  PubMed  Google Scholar 

  36. Li Y, Liu J, Chen C, Zhang X, Chen J (2017) Preparation of NiCoP Hollow Quasi-Polyhedra and Their Electrocatalytic Properties for Hydrogen Evolution in Alkaline Solution. ACS Appl Mater Interfaces 9:5982–5991

    Article  CAS  PubMed  Google Scholar 

  37. Li Y, Niu S, Rakov D, Wang Y, Caban-Acevedo M, Zheng S, Song B, Xu P (2018) Metal organic framework-derived CoPS/N-doped carbon for efficient electrocatalytic hydrogen evolution. Nanoscale 10:7291–7297

    Article  CAS  PubMed  Google Scholar 

  38. Pan Y, Sun K, Liu S, Cao X, Wu K, Cheong W-C, Chen Z, Wang Y, Li Y, Liu Y, Wang D, Peng Q, Chen C, Li Y (2018) Core–Shell ZIF-8@ZIF-67-Derived CoP Nanoparticle-Embedded N-Doped Carbon Nanotube Hollow Polyhedron for Efficient Overall Water Splitting. J Am Chem Soc 140:2610–2618

    Article  CAS  PubMed  Google Scholar 

  39. Weng BC, Wei W, Yiliguma, Wu H, Alenizi AM, Zheng GF (2016) J Mater Chem A 4:15353–15360

    Article  CAS  Google Scholar 

  40. Yang FL, Chen YT, Cheng GZ, Chen SL, Luo W (2017) Ultrathin Nitrogen-Doped Carbon Coated with CoP for Efficient Hydrogen Evolution. ACS Catal 7:3824–3831

    Article  CAS  Google Scholar 

  41. Yu SH, Chua DHC (2018) Toward High-Performance and Low-Cost Hydrogen Evolution Reaction Electrocatalysts: Nanostructuring Cobalt Phosphide (CoP) Particles on Carbon Fiber Paper. ACS Appl Mater Interfaces 10:14777–14785

    Article  CAS  PubMed  Google Scholar 

  42. Chen D, Zhu J, Mu X, Cheng R, Li W, Liu S, Pu Z, Lin C, Mu S (2020) Nitrogen-Doped carbon coupled FeNi3 intermetallic compound as advanced bifunctional electrocatalyst for OER, ORR and zn-air batteries. Appl Catal B 268:118729

    Article  CAS  Google Scholar 

  43. Chu W, Shi Z, Hou Y, Ma D, Bai X, Gao Y, Yang N (2020) Trifunctional of Phosphorus-Doped NiCo2O4Nanowire Materials for Asymmetric Supercapacitor, Oxygen Evolution Reaction, and Hydrogen Evolution Reaction. ACS Appl Mater Interfaces 12:2763–2772

    Article  CAS  PubMed  Google Scholar 

  44. Gong Y, Yang Z, Lin Y, Wang J, Pan H, Xu Z, Mater J (2018) Chem A 6:16950–16958

    CAS  Google Scholar 

  45. Hu K, Wu M, Hinokuma S, Ohto T, Wakisaka M, Fujita J-i, Ito Y, Mater J (2019) Chem A 7:2156–2164

    CAS  Google Scholar 

  46. Lai C, Liu X, Wang Y, Cao C, Yin Y, Yang H, Qi X, Zhong S, Hou X, Liang T (2020) Modulating ternary Mo–Ni–P by electronic reconfiguration and morphology engineering for boosting all-pH electrocatalytic overall water splitting. Electrochim Acta 330:135294

    Article  CAS  Google Scholar 

  47. Wang Z, Liu H, Ge R, Ren X, Ren J, Yang D, Zhang L, Sun X (2018) Phosphorus-Doped Co3O4Nanowire Array: A Highly Efficient Bifunctional Electrocatalyst for Overall Water Splitting. ACS Catal 8:2236–2241

    Article  CAS  Google Scholar 

  48. Yan H, Xie Y, Wu A, Cai Z, Wang L, Tian C, Zhang X, Fu H (2019) Anion‐Modulated HER and OER Activities of 3D Ni–V‐Based Interstitial Compound Heterojunctions for High‐Efficiency and Stable Overall Water Splitting. Adv Mater 31:1901174

    Article  Google Scholar 

  49. Zhang Y, Shao Q, Long S, Huang X (2018) Cobalt-molybdenum nanosheet arrays as highly efficient and stable earth-abundant electrocatalysts for overall water splitting. Nano Energy 45:448–455

    Article  CAS  Google Scholar 

  50. Li Y, Li F, Zhao Y, Li S-N, Zeng J-H, Yao H-C, Chen Y, Mater J (2019) Chem A 7:20658–20666

    CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (51674221 and 51704261) and the Natural Science Foundation of Hebei Province (B2018203330 and B2018203360).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xianfeng Hao, Ling Chen, Xiujuan Qin or Guangjie Shao.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOC 17.2 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Bai, L., Shi, H. et al. Mo-doped CoP nanosheets as high-performance electrocatalyst for HER and OER. Ionics 27, 3109–3118 (2021). https://doi.org/10.1007/s11581-021-04071-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04071-4

Keywords

Navigation