Skip to main content

Advertisement

Log in

Metal–organic framework–derived ultrasmall nitrogen-doped carbon-coated CoSe2/ZnSe nanospheres as enhanced anode materials for sodium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Ultrasmall nitrogen-doped carbon-coated CoSe2/ZnSe nanospheres (CoSe2/ZnSe@C nanospheres) are fabricated by direct selenization of a delicately designed Co1.6Zn0.4-(benzimidazole)4 metal–organic framework (MOF) nanosheet precursor and used as the anode materials in sodium-ion batteries (SIBs). The fabricated CoSe2/ZnSe@C nanospheres deliver a remarkable rate performance (395 mAh g−1 at 0.1 A g−1 and 341 mAh g−1 at 5.0 A g−1) and excellent long-term durability (346 mAh g−1 after 2500 cycle at 2.0 A g−1). The superior Na storage performance of the fabricated CoSe2/ZnSe@C nanospheres could be mainly attributed to their ultrasmall particle sizes and the phase boundaries between CoSe2 and ZnSe, which improve the kinetics of the electrode, relieve the volume change during the charge/discharge process, and provide extra Na+ storage sites. This work opens up possibilities to fabricate metal selenide–based hybrid materials with desired nanostructures and compositions from rationally designed multimetal MOF precursors for high-performance anode materials in SIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hwang JY, Myung ST, Sun YK (2017) Sodium-ion batteries: present and future. Chem Soc Rev 46(12):3529–3614. https://doi.org/10.1039/c6cs00776g

    Article  CAS  PubMed  Google Scholar 

  2. Tan H, Feng Y, Rui X et al (2019) Metal chalcogenides: paving the way for high-performance sodium/potassium-ion batteries. Small Methods 4(1):1900563. https://doi.org/10.1002/smtd.201900563

    Article  CAS  Google Scholar 

  3. Wu J, Ihsan-Ul-Haq M, Ciucci F et al (2021) Rationally designed nanostructured metal chalcogenides for advanced sodium-ion batteries. Energy Storage Mater 34:582–628. https://doi.org/10.1016/j.ensm.2020.10.007

    Article  Google Scholar 

  4. Yabuuchi N, Kubota K, Dahbi M et al (2014) Research development on sodium-ion batteries. Chem Rev 114(23):11636–11682. https://doi.org/10.1021/cr500192f

    Article  CAS  PubMed  Google Scholar 

  5. Ali Z, Zhang T, Asif M et al (2020) Transition metal chalcogenide anodes for sodium storage. Mater Today 35:131–167. https://doi.org/10.1016/j.mattod.2019.11.008

    Article  CAS  Google Scholar 

  6. Luo M, Yu H, Hu F et al (2020) Metal selenides for high performance sodium ion batteries. Chem Eng J 380:122557. https://doi.org/10.1016/j.cej.2019.122557

    Article  CAS  Google Scholar 

  7. Pan Y, Cheng X, Gao M et al (2020) Cagelike CoSe2@N-doped carbon aerogels with pseudocapacitive properties as advanced materials for sodium-ion batteries with excellent rate performance and cyclic stability. ACS Appl Mater Interfaces 12(30):33621–33630. https://doi.org/10.1021/acsami.0c06296

    Article  CAS  PubMed  Google Scholar 

  8. Ge P, Hou H, Li S et al (2018) Tailoring rod-like FeSe2 coated with nitrogen-doped carbon for high-performance sodium storage. Adv Funct Mater 28(30):1801765. https://doi.org/10.1002/adfm.201801765

    Article  CAS  Google Scholar 

  9. Wang K, Wang YP, Zhang YF et al (2020) Bimetallic organic framework derivation of three-dimensional and heterogeneous metal selenides/carbon composites as advanced anodes for lithium-ion batteries. Nanoscale 12(23):12623–12631. https://doi.org/10.1039/d0nr01528h

    Article  CAS  PubMed  Google Scholar 

  10. Zhang KHZ, Liu X, Tao Z, Chen J (2015) FeSe2 microspheres as a high-performance anode material for Na-ion batteries. Adv Mater 27(21):3305–3309

    Article  CAS  Google Scholar 

  11. Yousaf M, Chen Y, Tabassum H et al (2020) A dual protection system for heterostructured 3D CNT/CoSe2/C as high areal capacity anode for sodium storage. Adv Sci 7(5):1902907. https://doi.org/10.1002/advs.201902907

    Article  CAS  Google Scholar 

  12. Tang Y, Zhao Z, Hao X et al (2019) Cellular carbon-wrapped FeSe2 nanocavities with ultrathin walls and multiple rooms for ion diffusion-confined ultrafast sodium storage. J Mater Chem A 7(9):4469–4479. https://doi.org/10.1039/c8ta10614b

    Article  CAS  Google Scholar 

  13. Ali Z, Tang T, Huang X et al (2018) Cobalt selenide decorated carbon spheres for excellent cycling performance of sodium ion batteries. Energy Storage Mater 13:19–28. https://doi.org/10.1016/j.ensm.2017.12.014

    Article  Google Scholar 

  14. Jing P, Wang Q, Wang B et al (2020) Encapsulating yolk-shell FeS2@carbon microboxes into interconnected graphene framework for ultrafast lithium/sodium storage. Carbon 159:366–377. https://doi.org/10.1016/j.carbon.2019.12.060

    Article  CAS  Google Scholar 

  15. An C, Yuan Y, Zhang B et al (2019) Graphene wrapped FeSe2 nano-microspheres with high pseudocapacitive contribution for enhanced Na-ion storage. Adv Energy Mater 9(18):1900356. https://doi.org/10.1002/aenm.201900356

    Article  CAS  Google Scholar 

  16. Yang J, Gao H, Men S et al (2018) CoSe2 nanoparticles encapsulated by N-doped carbon framework intertwined with carbon nanotubes: high-performance dual-role anode materials for both Li- and Na-ion Batteries. Adv Sci 5(12):1800763. https://doi.org/10.1002/advs.201800763

    Article  CAS  Google Scholar 

  17. Fan H, Yu H, Zhang Y et al (2018) 1D to 3D hierarchical iron selenide hollow nanocubes assembled from FeSe2@C core-shell nanorods for advanced sodium ion batteries. Energy Storage Mater 10:48–55. https://doi.org/10.1016/j.ensm.2017.08.006

    Article  Google Scholar 

  18. Li B, Liu Y, Jin X et al (2019) Designed formation of hybrid nanobox composed of carbon sheathed CoSe2 anchored on nitrogen-doped carbon skeleton as ultrastable anode for sodium-ion batteries. Small 15(42):e1902881. https://doi.org/10.1002/smll.201902881

    Article  CAS  PubMed  Google Scholar 

  19. Ma X, Zou L, Zhao W (2018) Tailoring hollow microflower-shaped CoSe2 anodes in sodium ion batteries with high cycling stability. Chem Commun 54(74):10507–10510. https://doi.org/10.1039/c8cc04426k

    Article  CAS  Google Scholar 

  20. Li D, Zhou J, Chen X et al (2018) Achieving ultrafast and stable Na-ionstorage in FeSe2 nanorods/graphene anodes by controlling the surface oxide. ACS Appl Mater Interfaces 10(26):22841–22850. https://doi.org/10.1021/acsami.8b06318

    Article  CAS  PubMed  Google Scholar 

  21. Fang G, Wang Q, Zhou J et al (2019) Metal organic framework-templated synthesis of bimetallic selenides with rich phase boundaries for sodium-ion storage and oxygen evolution reaction. ACS Nano 13(5):5635–5645. https://doi.org/10.1021/acsnano.9b00816

    Article  CAS  PubMed  Google Scholar 

  22. Sun Z, Wu XL, Xu J et al (2020) Construction of bimetallic selenides encapsulated in nitrogen/sulfur co-doped hollow carbon nanospheres for high-performance sodium/potassium-ion half/full batteries. Small 16(19):e1907670. https://doi.org/10.1002/smll.201907670

    Article  CAS  PubMed  Google Scholar 

  23. Lin XM, Chen JH, Fan JJ et al (2019) Synthesis and operando sodiation mechanistic study of nitrogen-doped porous carbon coated bimetallic sulfide hollow nanocubes as advanced sodium ion battery anode. Adv Energy Mater 9(40):1902312. https://doi.org/10.1002/aenm.201902312

    Article  CAS  Google Scholar 

  24. Liu W, Shao M, Zhou W et al (2018) Hollow Ni-CoSe2 embedded in nitrogen-doped carbon nanocomposites derived from metal-organic frameworks for high-rate anodes. ACS Appl Mater Interfaces 10(45):38845–38852. https://doi.org/10.1021/acsami.8b08861

    Article  CAS  PubMed  Google Scholar 

  25. Augustyn V, Simon P, Dunn B (2014) Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci 7(5):1597. https://doi.org/10.1039/c3ee44164d

    Article  CAS  Google Scholar 

  26. Jiang Y, Liu J (2019) Definitions of pseudocapacitive materials: a brief review. Energy Environ Mater 2(1):30–37. https://doi.org/10.1002/eem2.12028

    Article  Google Scholar 

  27. Zhao F, Shen S, Cheng L et al (2017) Improved sodium-ion storage performance of ultrasmall iron selenide nanoparticles. Nano Lett 17(7):4137–4142. https://doi.org/10.1021/acs.nanolett.7b00915

    Article  CAS  PubMed  Google Scholar 

  28. Zhao KM, Liu SQ, Ye GY et al (2020) Ultrasmall 2D CoxZn2-x(benzimidazole)4 metal-organic framework nanosheets and their derived Co nanodots@Co, N-codoped graphene for efficient oxygen reduction reaction. Chemsuschem 13(6):1556–1567. https://doi.org/10.1002/cssc.201902776

    Article  CAS  PubMed  Google Scholar 

  29. Zhao W, Ci S, Hu X et al (2019) Highly dispersed ultrasmall NiS2 nanoparticles in porous carbon nanofiber anodes for sodium ion batteries. Nanoscale 11(11):4688–4695. https://doi.org/10.1039/c9nr00160c

    Article  CAS  PubMed  Google Scholar 

  30. Wang N, Xu X, Liao T et al (2018) Boosting sodium storage of double-shell sodium titanate microspheres constructed from 2D ultrathin nanosheets via sulfur doping. Adv Mater 30(49):e1804157. https://doi.org/10.1002/adma.201804157

    Article  CAS  PubMed  Google Scholar 

  31. Zhang Z, Huang Y, Liu X et al (2020) Core–shell Co, Zn bimetallic selenide embedded nitrogen-doped carbon polyhedral frameworks assist in sodium-ion battery ultralong cycle. ACS Sustain Chem Eng 8(22):8381–8390. https://doi.org/10.1021/acssuschemeng.0c02521

    Article  CAS  Google Scholar 

  32. Zhang S, Wang G, Wang B et al (2020) 3D carbon nanotube network bridged hetero-structured Ni-Fe-S nanocubes toward high-performance lithium, sodium, and potassium storage. Adv Funct Mater 30(24):2001592. https://doi.org/10.1002/adfm.202001592

    Article  CAS  Google Scholar 

  33. Bin D-S, Li Y, Sun Y-G et al (2018) Structural engineering of multishelled hollow carbon nanostructures for high-performance Na-ion battery anode. Adv Energy Mater 8(26):1800855. https://doi.org/10.1002/aenm.201800855

    Article  CAS  Google Scholar 

  34. Hu Y, Lu T, Zhang Y et al (2019) Highly dispersed ZnSe nanoparticles embedded in N-doped porous carbon matrix as an anode for potassium ion batteries. Part Part Syst Char 36(10):1900199. https://doi.org/10.1002/ppsc.201900199

    Article  CAS  Google Scholar 

  35. Ma D, Zhu Q, Li X et al (2019) Unraveling the impact of ether and carbonate electrolytes on the solid-electrolyte interface and the electrochemical performances of ZnSe@C Core-Shell Composites as anodes of lithium-ion batteries. ACS Appl Mater Interfaces 11(8):8009–8017. https://doi.org/10.1021/acsami.8b21237

    Article  CAS  PubMed  Google Scholar 

  36. Tian J, Li J, Zhang Y et al (2019) Carbon-coated CoSe2 nanoparticles confined in N-doped carbon microboxes with enhanced sodium storage properties. J Mater Chem A 7(37):21404–21409. https://doi.org/10.1039/c9ta06273d

    Article  CAS  Google Scholar 

  37. Wang X, He J, Yu B et al (2019) CoSe2 nanoparticles embedded MOF-derived Co-N-C nanoflake arrays as efficient and stable electrocatalyst for hydrogen evolution reaction. Appl Catal B 258:117996. https://doi.org/10.1016/j.apcatb.2019.117996

    Article  CAS  Google Scholar 

  38. Kong F, Wang J, Chen J et al (2020) MOF-derived ultrasmall CoSe2 nanoparticles encapsulated by an N-doped carbon matrix and their superior lithium/sodium storage properties. Chem Commun 56(64):9218–9221. https://doi.org/10.1039/d0cc03113e

    Article  CAS  Google Scholar 

  39. Liu Y, Chen Z, Jia H et al (2019) Iron-doping-induced phase transformation in dual-carbon-confined cobalt diselenide enabling superior lithium storage. ACS Nano 13(5):6113–6124. https://doi.org/10.1021/acsnano.9b02928

    Article  CAS  PubMed  Google Scholar 

  40. Jiang YL, Zou GQ, Hou HS et al (2019) Composition engineering boosts voltage windows for advanced sodium-ion batteries. ACS Nano 13(9):10787–10797. https://doi.org/10.1021/acsnano.9b05614

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Hunan Provincial Science and Technology Plan Project (grant nos. 2018RS3008 and 2017TP1001), National Natural Science Foundation of China (grant no. 51772332), Natural Science Foundation of Hunan Province (grant no. 2018JJ2485), the Large-scale Instruments and Equipment of Central South University, and the Hunan Provincial Postgraduates Innovative Scientific Research Project (grant no. 1053320183514).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen He.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 973 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, D., Liu, S., Zhao, K. et al. Metal–organic framework–derived ultrasmall nitrogen-doped carbon-coated CoSe2/ZnSe nanospheres as enhanced anode materials for sodium-ion batteries . Ionics 27, 3327–3337 (2021). https://doi.org/10.1007/s11581-021-04124-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04124-8

Keywords

Navigation