Skip to main content

Advertisement

Log in

Core shell structure CoMoO4@CuCo2O4 hybrids as advanced electrode materials for high-performance asymmetric supercapacitors

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

CoMoO4 microspheres were deposited on nickel (Ni) foam by simple hydrothermal method, and CuCo2O4 nanowires were uniformly grown on CoMoO4 microspheres, then CoMoO4@CuCo2O4 core shell structure composite material was successfully synthesized. The electrochemical test of CoMoO4@CuCo2O4 electrode was completed by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge–discharge (GCD). These experiment results exhibit that CoMoO4@CuCo2O4 electrode has excellent capacitance characteristic, including a remarkable specific capacitance of 2639 F g−1 at 1 A g−1 and an outstanding cycle life with a captaincy retention of 91.6% after 2000 cycles at 30 A g−1. Furthermore, an asymmetric supercapacitor (ASC) based on CoMoO4@CuCo2O4//activated carbon (AC) exhibited a high energy density of 51.2 W h kg−1 at 800.3 W kg−1. These performances strongly demonstrate that the CoMoO4@CuCo2O4 electrode synthesized by simple methods is an excellent electrode material in the application of supercapacitors (SCs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Liu Y, Xiang C, Chu H, Qiu S, McLeod J, She Z, Xu F, Sun L, Zou Y (2020) Binary Co-Ni oxide nanoparticle-loaded hierarchical graphitic porous carbon for high-performance supercapacitors. J Mater Sci Technol 37(02):135–142

    Article  Google Scholar 

  2. Liu A, Tang J (2020) Construction of polypyrrole-wrapped hierarchical CoMoO4 nanotubes as a high-performance electrode for supercapacitors. Ceram Int 46(8):10893–10902

    Article  CAS  Google Scholar 

  3. Zhang P, He H, Li Q (2020) Ni-Co-S nanosheets supported by CuCo2O4 nanowires for ultra-high capacitance hybrid supercapacitor electrode. Int J Hydrogen Energy 45(7):4784–4792

    Article  CAS  Google Scholar 

  4. Zheng Y, Li Z, Xu J, Wang T, Liu X, Duan X, Ma Y, Zhou Y, Pei C (2016) Multi-channeled hierarchical porous carbon incorporated Co3O4 nanopillar arrays as 3D binder-free electrode for high performance supercapacitors. Nano Energy 20:94–107

    Article  CAS  Google Scholar 

  5. Li Y, Wang X, Yang Q, Javed MS, Liu Q, Xu W, Hu C, Wei D (2017) Ultra-fine CuO nanoparticles embedded in three-dimensional graphene network nano-structure for high-performance flexible supercapacitors. Electrochim Acta 234:63–70

    Article  CAS  Google Scholar 

  6. Gueon D, Moon JH (2017) MnO2 nanoflake-shelled carbon nanotube particles for high-performance supercapacitors. ACS Sustainable Chemistry & Engineering 5(3):2445–2453

    Article  CAS  Google Scholar 

  7. Yadav AA, Hunge YM, Liu S, Kulkarni SB (2019) Ultrasound assisted growth of NiCo2O4@carbon cloth for high energy storage device application. Ultrasonics Sonochem 56:290–56296

    Article  CAS  Google Scholar 

  8. Xu G, Zhang Z, Qi X, Ren X, Liu S, Chen Q, Huang Z, Zhong J (2018) Hydrothermally synthesized FeCo2O4 nanostructures: structural manipulation for high-performance all solid-state supercapacitors. Ceram Int 44(1):120–127

    Article  CAS  Google Scholar 

  9. Peng S, Li L, Hao BW, Madhavi S, Xiong W (2015) Controlled growth of NiMoO4 nanosheet and nanorod arrays on various conductive substrates as advanced electrodes for asymmetric supercapacitors. Adv Energy Mater 5(2):1–7

    Article  Google Scholar 

  10. Long H, Liu T, Zeng W, Yang Y, Zhao S (2018) CoMoO4 nanosheets assembled 3D-frameworks for high-performance energy storage. Ceram Int 44(2):2446–2452

    Article  CAS  Google Scholar 

  11. Liu S, Hui K, Hui KN (2016) Flower-like copper cobaltite nanosheets on graphite paper as high-performance supercapacitor electrodes and enzymeless glucose sensors. ACS Appl Mater Interfaces 8(5):3258–3267

    Article  CAS  Google Scholar 

  12. Feng Y, Liu L, Liang J, Yao W, Tian B, Jiang C, Wu W (2019) Ni(OH)2/NiMoO4 nanoplates for large-scale fully-printed flexible solid-state supercapacitors. Elsevier 433(126676):1 126676.8

    Google Scholar 

  13. Wu Y, Guo W, Lian X, Tian Y, Wang W, Li J, Wang S (2019) Self-assembled three-dimensional hierarchical CoMoO4 nanosheets on NiCo2O4 for high-performance supercapacitor. J Alloys Compound 793(15):418–793424

    Article  CAS  Google Scholar 

  14. Nti F, Anang DA, Han JI (2018) Facilely synthesized NiMoO4/CoMoO4 nanorods as electrode material for high performance supercapacitor. Alloy Compd 742:342–350

    Article  CAS  Google Scholar 

  15. Chen H, Wang J, Han X, Liao F, Zhang Y, Han X, Xu C (2019) Simple growth of mesoporous zinc cobaltite urchin-like microstructures towards high-performance electrochemical capacitors. Ceram Int 45(3):4059–4066

    Article  CAS  Google Scholar 

  16. Wu H, Sun W, Shen J, Rooney DW, Wang Z, Sun K (2018) Role of flower-like ultrathin Co3O4 nanosheets in water splitting and non-aqueous Li-O2 batteries. Nanoscale 10(21):10221–10231

    Article  CAS  Google Scholar 

  17. Liu Y, Lu Q, Huang Z, Sun S, Yu B, Evariste U, Jiang G, Yao J (2018) Electrodeposition of Ni-Co-S nanosheet arrays on N-doped porous carbon nanofibers for flexible asymmetric supercapacitors. J Alloy Compd 762:301–311

    Article  CAS  Google Scholar 

  18. Shanmugavani A, Selvan RK (2016) Improved electrochemical performances of CuCo2O4/CuO nanocomposites for asymmetric supercapacitors. Electrochim Acta 188:852–862

    Article  CAS  Google Scholar 

  19. Cao Y, An L, Liao L, Liu X, Ji T, Zou R, Yang J, Qin Z, Hu J (2016) Hierarchical core/shell structures of ZnO nanorod@CoMoO4 nanoplates used as a high-performance electrode for supercapacitors. RSC Adv 6:3020–3024

    Article  CAS  Google Scholar 

  20. Cui C, Xu J, Wang L, Guo D, Mao M, Ma J, Wang T (2016) Growth of NiCo2O4@MnMoO4 nanocolumn arrays with superior pseudocapacitor properties. ACS Appl Mater Interfaces 8(13):8568–8575

    Article  CAS  Google Scholar 

  21. Liu S, Hui KS, Hui KN, Yun JM, Kim KH (2016) Vertically stacked bilayer CuCo2O4/MnCo2O4 heterostructures on functionalized graphite paper for high-performance electrochemical capacitors. Journal of Materials Chemistry A 4:8061–8071

    Article  CAS  Google Scholar 

  22. Min K, Xiao Y, Fan D, Yu X (2015) Tunable design of layered CuCo2O4 nanosheets@MnO2 nanoflakes core–shell arrays on Ni foam for high-performance supercapacitors. Journal of Materials Chemistry A 3(43):21528–21536

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the Engineering Research Center of Agricultural Multi-Dimensional Sensor Information Perception, Heilongjiang Province, and Heilongjiang Provincial Key Laboratory of Micro-Nano Sensor Component. This work was jointly supported by the Fundamental Research Funds in Heilongjiang Provincial Universities (Nos. 135109244, 135309115, 135309211, and 135409104), Heilongjiang Science Foundation Project (JQ2019F003 and ZD2019F004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bairui Tao or Fengjuan Miao.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Jingli Li and Bairui Tao are co-first authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, B., Li, J., Miao, F. et al. Core shell structure CoMoO4@CuCo2O4 hybrids as advanced electrode materials for high-performance asymmetric supercapacitors. Ionics 27, 3627–3637 (2021). https://doi.org/10.1007/s11581-021-04129-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04129-3

Keywords

Navigation