Skip to main content

Advertisement

Log in

On the dynamics of an SEIR epidemic model with a convex incidence rate

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

An SEIR epidemic model with a nonlinear incidence rate is studied. The incidence is assumed to be a convex function with respect to the infective class of a host population. A bifurcation analysis is performed and conditions ensuring that the system exhibits backward bifurcation are provided. The global dynamics is also studied, through a geometric approach to stability. Numerical simulations are presented to illustrate the results obtained analytically. This research is discussed in the framework of the recent literature on the subject.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson R.M., May R.M. (1991) Infectious Diseases in Humans: Dynamics and Control. Oxford University Press, Oxford

    Google Scholar 

  2. Arino J., McCluskey C.C.van den, Driessche P. (2003) Global results for an epidemic model with vaccination that exhibits backward bifurcation. SIAM J. Appl. Math. 64: 260–276

    Article  MATH  MathSciNet  Google Scholar 

  3. Beretta E., Kon R., Takeuchi Y. (2002) Nonexistence of periodic solutions in delayed Lotka-Volterra systems. Nonlinear Anal. Real World Appl. 3: 107–129

    Article  MATH  MathSciNet  Google Scholar 

  4. Beretta E., Solimano F., Takeuchi Y. (2002) Negative criteria for the existence of periodic solutions in a class of delay-differential equations. Nonlinear Anal. 50: 941–966

    Article  MATH  MathSciNet  Google Scholar 

  5. Buonomo B., d’Onofrio A., Lacitignola D. (2008) Global stability of an SIR epidemic model with information dependent vaccination. Math. Biosci. 216: 9–16

    Article  MATH  Google Scholar 

  6. Buonomo B., Lacitignola D. (2004) General conditions for global stability in a single species population-toxicant model. Nonlinear Anal. Real World Appl. 5: 749–762

    Article  MATH  MathSciNet  Google Scholar 

  7. Buonomo, B., Lacitignola, D.: New sufficient conditions for global stability of a basic model describing population growth in a polluted environment. In: Dynamic systems and applications, vol. 4, pp. 53–57. Dynamic, Atlanta (2004)

  8. Buonomo B., Lacitignola D. (2008) On the use of the geometric approach to global stability for three-dimensional ODE systems: a bilinear case. J. Math. Anal. Appl. 348: 255–266

    Article  MATH  MathSciNet  Google Scholar 

  9. Buonomo, B., Lacitignola, D.: On the global dynamics of some relevant bilinear models. In: Proceedings of Waves and Stability in Continuous Media, Scicli, Italy, June 2007, pp. 78–83. World Scientific, Singapore (2008)

  10. Busenberg S.N., Cooke K. (1993) Vertically Trasmitted Desease. Springer, Berlin

    Google Scholar 

  11. Capasso V. (1978) Global solution for a diffusive nonlinear deterministic epidemic model. SIAM J. Appl. Anal. 35: 274–284

    Article  MATH  MathSciNet  Google Scholar 

  12. Capasso, V.: Mathematical Structures of Epidemic Systems. Lecture Notes in Biomath., vol. 97. Springer, Berlin (1993)

  13. Capasso V., Grosso E., Serio G. (1977) I modelli matematici nella indagine epidemiologica. Applicazione all’epidemia di colera verificatasi in Bari nel 1973. Annali Sclavo 19: 193–208

    Google Scholar 

  14. Capasso V., Serio G. (1978) A generalization of the Kermack–Mc Kendrick deterministic epidemic model. Math. Biosci. 42: 41–61

    Article  MathSciNet  Google Scholar 

  15. Castillo-Chavez C., Song B. (2004) Dynamical models of tubercolosis and their applications. Math. Biosci. Eng. 1: 361–404

    MATH  MathSciNet  Google Scholar 

  16. d’Onofrio A. (2005) Vaccination policies and nonlinear force of infection: generalization of an observation by Alexander and Moghadas (2004). Appl. Math. Comput. 168: 613–622

    Article  MATH  MathSciNet  Google Scholar 

  17. Dushoff J. (1996) Incorporating immunological ideas in epidemiological models. J. Theor. Biol. 180: 181–187

    Article  Google Scholar 

  18. Dushoff J., Huang W., Castillo-Chavez C. (1998) Backwards bifurcations and catastrophe in simple models of fatal diseases. J. Math. Biol. 36: 227–248

    Article  MATH  MathSciNet  Google Scholar 

  19. Fan M., Li M.Y., Wang K. (2001) Global stability of an SEIS epidemic model with recruitment and a varying total population size. Math. Biosci. 170: 199–208

    Article  MATH  MathSciNet  Google Scholar 

  20. Freedman H.I., Ruan S., Tang M. (1994) Uniform persistence and flows near a closed positively invariant set. J. Diff. Equ. 6: 583–600

    Article  MATH  MathSciNet  Google Scholar 

  21. Guckenheimer J., Holmes P. (1983) Nonlinear oscillations, dynamical systems and bifurcations of vector fields. Springer, Berlin

    MATH  Google Scholar 

  22. Hadeler K.P., Castillo-Chavez C. (1995) A core group model for disease transmission. Math. Biosci. 128: 41–55

    Article  MATH  Google Scholar 

  23. Hadeler K.P.van den, Driesche P. (1997) Backward bifurcation in epidemic control. Math. Biosci. 146: 15–35

    Article  MATH  MathSciNet  Google Scholar 

  24. Huang W., Cooke K.L., Castillo-Chavez C. (1992) Stability and bifurcation for a multiple-group model for the dynamics of HIV/AIDS transmission. SIAM J. Appl. Math. 52: 835–854

    Article  MATH  MathSciNet  Google Scholar 

  25. Hethcote H.W. (2000) The mathematics of infectious diseases. SIAM Rev. 42: 599–653

    Article  MATH  MathSciNet  Google Scholar 

  26. Hutson V., Schmitt K. (1992) Permanence and the dynamics of biological systems. Math. Biosci. 111: 1–71

    Article  MATH  MathSciNet  Google Scholar 

  27. Iwami S., Takeuchi Y., Liu X. (2007) Avian-human influenza epidemic model. Math. Biosci. 207: 1–25

    Article  MATH  MathSciNet  Google Scholar 

  28. Jin Y., Wang W., Xiao S. (2007) A SIRS model with a nonlinear incidence. Chaos Solitons Fractals 34: 1482–1497

    Article  MathSciNet  Google Scholar 

  29. Korobeinikov A. (2006) Lyapunov functions and global stability for SIR and SIRS epidemiological models with nonlinear transmission. Bull. Math. Biol. 30: 615–626

    Article  MathSciNet  Google Scholar 

  30. Korobeinikov A. (2007) Global properties of infectious disease models with nonlinear incidence. Bull. Math. Biol. 69: 1871–1886

    Article  MATH  MathSciNet  Google Scholar 

  31. Kribs-Zaleta C.M. (1999) Core recruitment effects in SIS models with constant total populations. Math. Biosci. 160: 109–158

    Article  MATH  MathSciNet  Google Scholar 

  32. Kribs-Zaleta C.M., Velasco-Hernandez J.X. (2000) A simple vaccination model with multiple endemic states. Math. Biosci. 164: 183–201

    Article  MATH  Google Scholar 

  33. Lajmanovich J.A., Yorke J.A. (1976) A deterministic model for gonorrhea in a nonhomogeneous population. Math. Biosci. 28: 221–236

    Article  MATH  MathSciNet  Google Scholar 

  34. Li G., Jin Z. (2005) Global stability of a SEIR epidemic model with infectious force in latent, infected and immune period. Chaos Solitons Fractals 25: 1177–1184

    Article  MATH  MathSciNet  Google Scholar 

  35. Li G., Wang W., Jin Z. (2006) Global stability of an SEIR epidemic model with constant immigration. Chaos Solitons Fractals 30: 1012–1019

    Article  MATH  MathSciNet  Google Scholar 

  36. Li M.Y., Graef J.R., Wang L., Karsai J. (1999) Global stability of a SEIR model with varying total population size. Math. Biosci. 160: 191–213

    Article  MATH  MathSciNet  Google Scholar 

  37. Li M.Y., Muldowney J.S. (1993) On Bendixson’s criterion. J. Diff. Equ. 106: 27–39

    Article  MATH  MathSciNet  Google Scholar 

  38. Li M.Y., Muldowney J.S. (1995) On R.A. Smith’s autonomous convergence theorem. Rocky Mount. J.~Math. 25: 365–379

    Article  MATH  MathSciNet  Google Scholar 

  39. Li M.Y., Muldowney J.S. (1995) Global stability for the SEIR model in epidemiology. Math. Biosci. 125: 155–164

    Article  MATH  MathSciNet  Google Scholar 

  40. Li M.Y., Muldowney J.S. (1996) A geometric approach to global-stability problems. SIAM J. Math. Anal. 27: 1070–1083

    Article  MATH  MathSciNet  Google Scholar 

  41. Li, M.Y., Muldowney, J.S.: Dynamics of differential equations on invariant manifolds. In: Special issue in celebration of Jack K. Hale’s 70th birthday, Part 2 (Atlanta, GA/Lisbon, 1998). J. Diff. Equ. 168, 295–320 (2000)

  42. Li M.Y., Smith H.L., Wang L. (2001) Global dynamics of an SEIR epidemic model with vertical transmission. SIAM J. Math. Anal. 62: 58–69

    Article  MATH  MathSciNet  Google Scholar 

  43. Li, M.Y., Wang, L.: Global stability in some SEIR epidemic models. In: Mathematical approaches for emerging and reemerging infectious diseases: models, methods, and theory (Minneapolis, MN, 1999), IMA Vol. Math. Appl., vol. 126, pp. 295–311. Springer, New York (2002)

  44. Martin R.H. Jr (1974) Logarithmic norms and projections applied to linear differential systems. J. Math. Anal. Appl. 45: 432–454

    Article  MATH  MathSciNet  Google Scholar 

  45. Muldowney J.S. (1990) Compound matrices and ordinary differential equations. Rocky Mount. J. Math. 20: 857–872

    Article  MATH  MathSciNet  Google Scholar 

  46. Reluga T.C., Medlock J. (2007) Resistance mechanisms matter in sir models. Math. Biosci. Eng. 4: 553–563

    MATH  MathSciNet  Google Scholar 

  47. van den Driessche P., Watmough J. (2000) A simple SIS epidemic model with a backward bifurcation. J. Math. Biol. 40: 525–540

    Article  MATH  MathSciNet  Google Scholar 

  48. van den Driessche P., Watmough J. (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180: 29–48

    Article  MATH  MathSciNet  Google Scholar 

  49. van den Driessche, P., Watmough, J.: Epidemic solutions and endemic catastrophies. In: Dynamical systems and their applications in biology, Cape Breton Island, NS, 2001. Fields Inst. Commun., vol. 36, pp. 247–257. American Mathematical Society, Providence (2003)

  50. Wang L., Li M.Y. (2006) Mathematical analysis of the global dynamics of a model for HIV infection of CD4+ T cells. Math. Biosci. 200: 44–57

    Article  MATH  MathSciNet  Google Scholar 

  51. Wang L., Li M.Y., Kirschner D. (2002) Mathematical analysis of the global dynamics of a model for HTLV-I infection and ATL progression. Math. Biosci. 179: 207–217

    Article  MATH  MathSciNet  Google Scholar 

  52. Wang W. (2006) Backward bifurcation of an epidemic model with treatment. Math. Biosci. 201: 58–71

    Article  MATH  MathSciNet  Google Scholar 

  53. Xiao D., Ruan S. (2007) Global analysis of an epidemic model with nonmonotone incidence rate. Math. Biosci. 208: 419–429

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Buonomo.

Additional information

Communicated by Editor-in-Chief.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buonomo, B., Lacitignola, D. On the dynamics of an SEIR epidemic model with a convex incidence rate. Ricerche mat. 57, 261–281 (2008). https://doi.org/10.1007/s11587-008-0039-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11587-008-0039-4

Keywords

Mathematics Subject Classification (2000)

Navigation