Skip to main content

Advertisement

Log in

The global dynamics of a model about HIV-1 infection in vivo

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

A four dimension ODE model is built to study the infection of human immunodeficiency virus (HIV) in vivo. We include in this model four components: the healthy T cells, the latent-infected T cells, the active-infected T cells and the HIV virus. Two types of HIV transmissions in vivo are also included in the model: the virus-to-cell transmission, and the cell-to-cell HIV transmission. There are two possible equilibriums: the healthy equilibrium, and the infected steady state. The basic reproduction number R 0 is introduced. When R 0 < 1, the healthy equilibrium is globally stable and when R 0 > 1, the infected equilibrium exists and is globally stable. Through simulations, we find that, the cell-to-cell HIV transmission is very important for the final outcome of the HIV attacking. Some important clinical observations about the HIV infection situation in lymph node are also verified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Perelson A.S., Kirschner D.E., Boer R.D.: Dynamics of HIV infection of CD4+ T cells. Math. Biosci. 114, 81–125 (1992)

    Article  Google Scholar 

  2. Perelson A.S.: Modeling the Interaction of the Immue System with HIV, Mathematical and Statistical Approaches to AIDS Epidemiology, pp. 350. Springer, Berlin (1989)

    Google Scholar 

  3. Kirschner D.E.: Using mathematics to understand HIV immue dynamics. Notices Am. Math. Soc. 43, 191 (1996)

    MATH  MathSciNet  Google Scholar 

  4. Perelson A.S., Nelson P.W.: Mathematical analysis of HIV −1 dynamics in vivio. SIAM Rev. 41, 3 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Rebecca V.C., Ruan S.: A delay-differential equation model of HIV infection of CD4+ T cells. Math. Biosci. 165, 27–39 (2000)

    Article  MATH  Google Scholar 

  6. Lifson J.D. et al.: Induction of CD4-dependent cell fusion by the HTLV-III/LAV envelope glycoprotein. Nature 323, 725–728 (1986)

    Article  Google Scholar 

  7. Sodroski J., Goh W.C., Rosen C., Campbell K., Haseltine W.A.: Role of the HTLV-III/LAV envelope in syncytium formation and cytopathicity. Nature 322, 470–474 (1986)

    Article  Google Scholar 

  8. Budka H.: Multinucleated giant cells in brain: a hallmark of the acquired immune deficiency syndrome (AIDS). Acta Neuropathol. 69, 253–258 (1986)

    Article  Google Scholar 

  9. Frankel S.S. et al.: Replication of HIV-1 in dendritic cell-derived syncytia at the mucosal surface of the adenoid. Science 272, 115–117 (1996)

    Article  Google Scholar 

  10. Koenig S. et al.: Detection of AIDS virus in macrophages in brain tissue from AIDS patients with encephalopathy. Science 233, 1089–1093 (1986)

    Article  Google Scholar 

  11. Castedo M. et al.: Sequential involvement of Cdk1, mTOR and p53 in apoptosis induced by the HIV-1 envelope. EMBO J. 21, 4070–4080 (2002)

    Article  Google Scholar 

  12. Ferri K.F. et al.: Apoptosis control in syncytia induced by the HIV type 1-envelope glycoprotein complex: role of mitochondria and caspases. J. Exp. Med. 192, 1081–1092 (2000)

    Article  Google Scholar 

  13. Laurent-Crawford A.G. et al.: The cytopathic effect of HIV is associated with apoptosis. Virology 185, 829–839 (1991)

    Article  Google Scholar 

  14. Amendola A. et al.: Induction of tissue transglutaminase in HIV patogenesis: evidence for high rate apoptosis of CD4+ T lymphocytes and accessory cells in lymphoid tissues. Proc. Natl. Acad. Sci. USA 93, 11057–11062 (1996)

    Article  Google Scholar 

  15. Gupta P., Balachandran R., Ho M., Enrico A., Rinaldo C.: Cell-to-cell transmission of human immunodeficiency virus type 1 in the presence of azidothymidine and neutralizing antibody. J. Virol. 63, 2361–2365 (1989)

    Google Scholar 

  16. Phillips D.M.: The role of cell-to-cell transmission in HIV infection. AIDS 8, 719–731 (1994)

    Article  Google Scholar 

  17. Sato H., Orenstein J., Dimitrov D., Martin M.: Cell-to-cell spread of HIV-1 occurs within minutes and may not involve the participation of virus particles. Virology 186, 712–724 (1992)

    Article  Google Scholar 

  18. Gummurulu S., Kinsey M.C., Emerman M.: An in vitro rapid-turnover assay for human immunodeficiency virus type 1 replication selects for cell-to-cell spread of virus. J. Virol. 74, 10882–10891 (2000)

    Article  Google Scholar 

  19. Levy, J.: HIV and the Pathogenesis of AIDS, ISBN 7-03-007902-7 (1998)

  20. Frost S.D., Mclean A.R.: Quasispecies dynamics and the emergence of drug resistance during zidovudine therapy of HIV infection. AIDS 8, 323–332 (1994)

    Article  Google Scholar 

  21. Nowak M.A., Bonhoeffer S., Shaw G.M., May R.M.: Anti-viral drug treatment: Dynamics of resistance in free virus and infected cell population. J. Theor. Biol. 184, 203–221 (1997)

    Article  Google Scholar 

  22. Arnaout R.A., Nowak M.A.: Competivie coexistence in antiviral immunity. J. Theor. Biol. 204, 431–440 (2000)

    Article  Google Scholar 

  23. Wodarz D., Lloyd A.L.: Innmune responses and the emergence of drug-resistant virus strains in vivo. Proc. R. Soc. Lond. B. 271, 1101–1109 (2004)

    Article  Google Scholar 

  24. Culshaw R.V., Ruan S.: A delay-differential equation model of HIV infection of CD4+ T cells. Math. Biosci. 165, 27–39 (2000)

    Article  MATH  Google Scholar 

  25. Lou J., Ruggeri T., Tebaldi C.: Modelling cancer in HIV-1 infected individuals: Equilibria, cycles and chaotic behavior. Math. Biosci. Eng. 3(2), 313–324 (2006)

    MATH  MathSciNet  Google Scholar 

  26. Lou J., Ruggeri T., Ma Z.: Cycles and chaotic behavior in an AIDS-related cancer dynamic model in vivo. J. Biol. Syst. 15(2), 149–168 (2007)

    Article  Google Scholar 

  27. Lou J., Ma Z., Shao Y.M., Han L.T.: Modelling the interaction of T Cells, antigen presenting cells and HIV-1 in vivo. Comput. Math. Appl. 48, 9–33 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  28. LaSalle J.P.: The Stability of Dynamical System. SIAM, Philadelphia (1976)

    Google Scholar 

  29. Smith R.J.: Adherence to antiretroviral HIV drugs: how many doses can you miss before resistance emerges?. Proc. R. Soc. B. 273, 617–624 (2006)

    Article  Google Scholar 

  30. Haase A.T. et al.: Quantitative image analysis of HIV-1 infection in lymphoid tissue. Science 274, 985 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Lou.

Additional information

Communicated by T. Ruggeri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wen, Q., Lou, J. The global dynamics of a model about HIV-1 infection in vivo. Ricerche mat. 58, 77–90 (2009). https://doi.org/10.1007/s11587-009-0048-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11587-009-0048-y

Keywords

Mathematics Subject Classification (2000)

Navigation