Skip to main content

Advertisement

Log in

Analysis of a mosquito-borne disease transmission model with vector stages and nonlinear forces of infection

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

We study a mosquito-borne epidemic model where the vector population is distinct in aquatic and adult stages and a saturating effect of disease transmission is assumed to occur when the population of infectious carriers becomes large enough. A qualitative analysis, including centre manifold analysis, has been performed to determine the existence of stability–instability thresholds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adongo, D., Fister, K.R., Gaff, H., Hartley, D.: Optimal control applied to Rift Valley fever. Nat. Res. Model. 26, 385–402 (2013)

    Article  MathSciNet  Google Scholar 

  2. Anderson, R.M., May, R.M.: Infectious Diseases in Humans: Dynamics and Control. Oxford University Press, Oxford (1991)

    Google Scholar 

  3. Anita, S., Capasso, V.: Stabilization of a reaction–diffusion system modelling malaria transmission. Discret. Contin. Dyn. Syst. B 17, 1673–1684 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  4. Benedict, M.Q., Levine, R.S., Hawley, W.A., Lounibos, L.P.: Spread of the tiger: global risk of invasion by the mosquito Aedes albopictus. Vector Borne Zoonotic Dis. 7, 76–85 (2007)

    Article  Google Scholar 

  5. Buonomo, B., Vargas De-León, C.: Stability and bifurcation analysis of a vector-bias model of malaria transmission. Math. Biosci. 242, 59–67 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cai, L., Guo, S., Li, X.Z., Ghosh, M.: Global dynamics of a dengue epidemic mathematical model. Chaos Solitons Fractals 42, 2297–2304 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cai, L.M., Li, X.Z.: Global analysis of a vector–host epidemic model with nonlinear incidences. Appl. Math. Comput. 217, 3531–3541 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  8. Capasso, V.: Mathematical Structures of Epidemic Systems. Lecture Notes in Biomathematics, vol. 97. Springer, Berlin (1993)

  9. Capasso, V., Grosso, E., Serio, G.: I modelli matematici nella indagine epidemiologica. Applicazione all’epidemia di colera verificatasi in Bari nel 1973 (italian). Ann. Sclavo 19, 193–208 (1977)

    Google Scholar 

  10. Capasso, V., Serio, G.: A generalization of the Kermack–Mc Kendrick deterministic epidemic model. Math. Biosci. 42, 41–61 (1978)

    Article  MathSciNet  Google Scholar 

  11. Castillo-Chavez, C., Song, B.: Dynamical models of tuberculosis and their applications. Math. Biosci. Eng. 1, 361–404 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Corless, R.M.: Essential Maple 7: An Introduction for Scientific Programmers. Springer, New York (2002)

    Google Scholar 

  13. Diekmann, O., Heesterbeek, J.A.P.: Mathematical Epidemiology of Infectious Diseases. Model Building, Analysis and Interpretation. Wiley, Chichester (2000)

    Google Scholar 

  14. d’Onofrio, A.: Vaccination policies and nonlinear force of infection: generalization of an observation by Alexander and Moghadas (2004). Appl. Math. Comput. 168, 613–622 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Dumont, Y., Dufourd, C.: Spatio-temporal modeling of mosquito distribution. AIP Conf. Proc. 1404, 162–167 (2011)

    Article  Google Scholar 

  16. Dushoff, J., Huang, W., Castillo-Chavez, C.: Backward bifurcations and catastrophe in simple models of fatal diseases. J. Math. Biol. 36, 227–248 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  17. Esteva, L., Matias, M.: A model for vector transmitted diseases with saturation incidence. J. Biol. Syst. 9, 235–245 (2001)

    Article  Google Scholar 

  18. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

  19. Hethcote, H.W.: The mathematics of infectious diseases. SIAM Rev. 42, 599–653 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  20. Jin, Y., Wang, W., Xiao, S.: An SIRS model with a nonlinear incidence rate. Chaos Solitons Fractals 34, 1482–1497 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Keeling, M.J., Rohani, P.: Modeling Infectious Diseases in Humans and Animals. Princeton University Press, Princeton (2008)

    MATH  Google Scholar 

  22. Lutambi, A.M., Penny, M.A., Smith, T., Chitnis, N.: Mathematical modelling of mosquito dispersal in a heterogeneous environment. Math. Biosci. 241, 198–216 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  23. Maidana, N.A., Yang, H.M.: Describing the geographic spread of dengue disease by traveling waves. Math. Biosci. 215, 64–77 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  24. Mecoli, M., De Angelis, V., Brailsford, S.C.: Using system dynamics to evaluate control strategies for mosquito-borne diseases spread by human travel. Comput. Oper. Res. 40, 2219–2228 (2013)

    Article  Google Scholar 

  25. Moreno Glasser, C., de Castro Gomes, A.: Infestation of S. Paulo State, Brazil, by Aedes aegypti and Aedes albopictus (Portuguese). Rev. Saúde Pública 34, 570–577 (2000)

  26. Moulay, D., Aziz-Alaoui, M.A., Cadivel, M.: The chikungunya disease: modeling, vector and transmission global dynamics. Math. Biosci. 229, 50–63 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  27. Neteler, M., Roiz, D., Rocchini, D., Castellani, C., Rizzoli, A.: Terra and Aqua satellites track tiger mosquito invasion: modelling the potential distribution of Aedes albopictus in north-eastern Italy. Int. J. Health Geogr. 10, 49 (2011)

    Article  Google Scholar 

  28. Ozair, M., Lashari, A.A., Jung, I.H., Okosun, K.O.: Stability analysis and optimal control of a vector-borne disease with nonlinear incidence. Discret. Dyn. Nat. Soc. Article ID 595487 (2012)

  29. Poletti, P., Messeri, G., Ajelli, M., Vallorani, R., Rizzo, C., Merler, S.: Transmission potential of chikungunya virus and control measures: the case of Italy. PLoS One 3, e18860 (2011)

    Article  Google Scholar 

  30. Rionero, S.: \(L^2\) stability of solutions to a nonlinear binary reaction–diffusion system of P.D.E.s. Rend. Mat. Acc. Lincei 16, 227–238 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  31. Rionero, S.: A nonlinear \(L^2\) stability analysis for two species dynamics with dispersal. Math. Biosci. Eng. 3, 189–204 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  32. Rionero, S.: A rigorous reduction of the \(L^2\)-stability of the solutions to a nonlinear binary reaction- diffusion system of P.D.E.s to the stability of the solutions to a linear binary system of ODEs. J. Math. Anal. Appl. 319, 377–397 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  33. Rionero, S.: On the nonlinear stability of the critical points of an epidemic SEIR model via a novel Lyapunov function. Rend. Acc. Sci. Fis. Nat. Napoli 75, 115–129 (2008)

    MATH  MathSciNet  Google Scholar 

  34. Rionero, S.: Stability of ternary reaction-diffusion dynamical systems. Rend. Lincei Mat. Appl. 22, 245–268 (2011)

    MATH  MathSciNet  Google Scholar 

  35. Rionero, S.: \(L^2\)-energy decay of convective nonlinear PDEs reaction–diffusion systems via auxiliary ODEs systems. Ric. Mat. (2015). doi:10.1007/s11587-015-0231-2

  36. Rodrigues, H.S., Monteiro, M.T.T., Torres, D.F.M.: Vaccination models and optimal control strategies to dengue. Math. Biosci. 247, 1–12 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  37. Takahashi, L.T., Maidana, N.A., Ferreira, W.C., Jr, Pulino P., Yang, H.M.: Mathematical models for the Aedes aegypti dispersal dynamics: travelling waves by wing and wind. Bull. Math. Biol. 67, 509–528 (2005)

    Article  MathSciNet  Google Scholar 

  38. Tolle, M.A.: Mosquito-borne diseases. Curr. Probl. Pediatr. Adolesc. Health Care 39, 97–140 (2009)

    Article  Google Scholar 

  39. van den Driessche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180, 29–48 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  40. Xiao, D., Ruan, S.: Global analysis of an epidemic model with nonmonotone incidence rate. Math. Biosci. 208, 419–429 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The work of E. A.-V. has been partially supported by SNI, under Grant 15284. The work of B. B. has been partially supported by local Grant 2015-2016 ‘Analysis of Complex Biological Systems’ and has been performed under the auspices of the Italian National Group for the Mathematical Physics (GNFM) of National Institute for Advanced Mathematics (INdAM). The authors gratefully acknowledge Noé Chan-Chi and Erika Rivero-Esquivel for their helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Buonomo.

Additional information

Communicated by Salvatore Rionero.

Appendix: Proof of Routh–Hurwitz conditions in Theorem 4

Appendix: Proof of Routh–Hurwitz conditions in Theorem 4

Consider the cubic polynomial \(P( \lambda ) = \lambda ^3 + a_2 \lambda ^2 +a_1 \lambda + a_0\) in (20), where the coefficients are given in (21). We first show that \(a_0\) is positive.

Recall that

$$\begin{aligned} a_0= & {} \mu _1\mu _H(\sigma +\mu _H)+\beta _2\mu _1(\sigma +\mu _H)\,g_2(M_I^*)+\beta _1\mu _H(\sigma +\mu _H)\,g_1(I^*)\\&+ \sigma \beta _1\beta _2\,g_1(I^*)g_2(M_I^*)\nonumber \\&+ \mu _H\left[ \beta _1\beta _2\,g_1(I^*)g_2(M_I^*)-\frac{\beta _1\beta _2H^*M_S^*}{(\alpha _1I^*+1)^2(\alpha _2M_I^*+1)^2}\right] . \end{aligned}$$

Substituting \(H^{*}\) given in (19), we have that

$$\begin{aligned} \frac{\beta _1 \beta _2 H^{*} M_S^{*}}{( \alpha _1 I^{*}+1 )^{2} ( \alpha _2 M_I^{*} +1 )^{2}} \!=\! \frac{\beta _1 (\sigma + \mu _H) M_S^{*}\,g_1(I^{*})}{ M_I^{*}( \alpha _1 I^{*}+1 ) ( \alpha _2 M_I^{*} +1 )} \!=\! \frac{\mu _1(\sigma + \mu _H)}{(\alpha _1 I^{*}+1)(\alpha _2 M_I^{*} +1)},\nonumber \\ \end{aligned}$$
(24)

where the last equality follows from (18). In view of (24), we get

$$\begin{aligned} a_0= & {} ( \sigma + \mu _H ) \left[ \mu _1 \mu _H \left( 1- \frac{1}{( \alpha _1 I^{*}+1 ) ( \alpha _2 M_I^{*} +1 ) } \right) \right. \nonumber \\&\left. + \mu _1\beta _2\,g_2(M_I^*)+\mu _H\beta _1\,g_1(I^{*})\right] \nonumber \\&+ \beta _1\beta _2( \sigma + \mu _H )\, g_1(I^*)g_2(M_I^*), \end{aligned}$$
(25)

which is positive.

Similarly, using (24) for \(a_1\), it follows

$$\begin{aligned} a_1= & {} \mu _1 \mu _H + ( \sigma + \mu _H )\mu _1 \left( 1- \frac{ 1}{( \alpha _1 I^{*}+1 ) ( \alpha _2 M_I^{*} +1 ) } \right) + \mu _H ( \sigma + \mu _H )\nonumber \\&+ \, \beta _2( \sigma + \mu _1 + \mu _H )\,g_2(M_I^*) + \beta _1 ( \sigma + 2 \mu _H ) \, g_1(I^*) + \beta _1\beta _2 g_1(I^*)g_2(M_I^*),\nonumber \\ \end{aligned}$$
(26)

so that \(a_1\) is positive.

Finally, from (25), (26) and \(a_2\) in (21) it is easy to show that \(a_2a_1-a_0>0\), so that all the Routh–Hurwitz conditions in Theorem 4 are verified.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avila-Vales, E., Buonomo, B. Analysis of a mosquito-borne disease transmission model with vector stages and nonlinear forces of infection. Ricerche mat. 64, 377–390 (2015). https://doi.org/10.1007/s11587-015-0245-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11587-015-0245-9

Keywords

Mathematics Subject Classification

Navigation