Skip to main content
Log in

Importance of Darcy or Brinkman laws upon resonance in thermal convection

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

Thermal convection is analysed in a layer of Brinkman or Darcy porous material when the buoyancy force is quadratic in the temperature field and there is also present a constant heat source. In this situation resonance may occur in the sense that convective motion may commence simultaneously in two separate layers in the porous medium. It is shown that whether resonance occurs or not depends crucially on whether a Brinkman or Darcy law holds and this indicates how important it is to understand the model for flow in porous media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. van den Berg, A.P., Yuen, D.A., Beebe, G.L., Christiansen, M.D.: The dynamical impact of electronic thermal conductivity on deep mantle convection of exosolar planets. Phys. Earth Planet. Inter. 178, 136–154 (2010)

    Article  Google Scholar 

  2. Berlengiero, M., Emanuel, K.A., von Hardenberg, J., Provenzale, A., Spiegel, E.A.: Internally cooled convection: a fillip for Philip. Commun. Nonlinear Sci. Numer. Simul. 17, 1998–2007 (2012)

    Article  MathSciNet  Google Scholar 

  3. Capone, F., Gentile, M., Hill, A.A.: Penetrative convection via internal heating in anisotropic porous media. Mech. Res. Commun. 441–444, 37 (2010)

    MATH  Google Scholar 

  4. Capone, F., Gentile, M., Hill, A.A.: Penetrative convection in anisotropic porous media with variable permeability. Acta Mech. 49–58, 216 (2011)

    MATH  Google Scholar 

  5. Capone, F., Gentile, M., Hill, A.A.: Double-diffusive penetrative convection simulated via internal heating in an anisotropic porous layer with throughflow. Int. J. Heat Mass Transf. 54, 1622–1626 (2011)

    Article  MATH  Google Scholar 

  6. Capone, F., De Luca, R.: Ultimately boundedness and stability of triply diffusive mixtures in rotating porous layers under the action of the Brinkman law. Int. J. Non-Linear Mech. 47, 799–805 (2012)

    Article  Google Scholar 

  7. Capone, F., De Luca, R.: On the stability-instability of vertical throughflows in double diffusive mixtures saturating rotating porous layers with large pores. Ricerche di Matematica 63, 119–148 (2014)

    MathSciNet  MATH  Google Scholar 

  8. Chen, F.: Stability of Taylor–Dean flow in an annulus with arbitrary gap spacing. Phys. Rev. E 48, 1036–1045 (1993)

    Article  Google Scholar 

  9. Chen, F., Chang, M.H.: Stability of Taylor–Dean flow in a small gap between rotating cylinders. J. Fluid Mech. 243, 443–455 (1992)

    Article  MATH  Google Scholar 

  10. De Luca, R.: Global nonlinear stability and “cold convection instability” of non-constant porous throughflows, 2D in vertical planes. Ricerche di Matematica 64, 99–113 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dongarra, J.J., Straughan, B., Walker, D.W.: Chebyshev tau-QZ algorithm methods for calculating spectra of hydrodynamic stability problems. Appl. Numer. Math. 22, 399–435 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hill, A.A., Carr, M.: The influence of a fluid-porous interface on solar pond stability. Adv. Water Resour. 1–6, 52 (2013)

    Google Scholar 

  13. Hill, A.A., Carr, M.: Stabilising solar ponds by utilising porous materials. Adv. Water Resour. 1–6, 60 (2013)

    Google Scholar 

  14. Imamura, T., Higuchi, T., Maejima, Y., Takagi, M., Sugimoto, N., Ikeda, K., Ando, H.: Inverse insolation dependence of Venus’ cloud-level convection. Icarus 228, 181–188 (2014)

    Article  Google Scholar 

  15. Israel, H., Miranville, A., Petcu, M.: Numerical analysis of a Cahn–Hilliard type equation with dynamic boundary conditions. Ricerche di Matematica 64, 25–50 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Johnson, D., Narayanan, R.: Experimental observation of dynamic mode switching in interfacial-tension-driven convection near a codimension-two point. Phys. Rev. E 54, R3102–R3104 (1996)

    Article  Google Scholar 

  17. Kaminski, E., Chenet, A.L., Jaupart, C., Courtillot, V.: Rise of volcanic plumes to the stratosphere aided by penetrative convection above large lava flows. Earth Planet. Sci. Lett. 301, 171–178 (2011)

    Article  Google Scholar 

  18. Kirillov, S.A., Dmitrenko, I.A., Hölemann, J.A., Kassens, H., Bloshkina, E.: The penetrative mixing in the Laptev sea coastal polynya pynocline layer. Cont. Shelf Res. 63, 34–42 (2013)

    Article  Google Scholar 

  19. Krishnamurti, R.: Convection induced by selective absorption of radiation: a laboratory model of conditional instability. Dyn. Atmos. Oceans 27, 367–382 (1997)

    Article  Google Scholar 

  20. Larson, V.E.: Stability properties of and scaling laws for a dry radiative–convective atmosphere. Q. J. R. Meteorol. Soc. 126, 145–171 (2000)

    Article  Google Scholar 

  21. Larson, V.E.: The effects of thermal radiation on dry convective instability. Dyn. Atmos. Oceans 34(2001), 45–71 (2001)

    Article  Google Scholar 

  22. Machado, L.A.T., Lima, W.F.A., Pinto, O., Morales, C.A.: Relationship between cloud-to-ground discharge and penetrative clouds: a multi-channel satellite application. Atmos. Res. 93, 304–309 (2009)

    Article  Google Scholar 

  23. Messina, E., Russo, E., Vecchio, A.: Volterra integral equations in time scales: stability under constant perturbations via a Lyapunov direct method. Ricerche di Matematica (2015). doi:10.1007/s11587-015-0243-y

    MathSciNet  MATH  Google Scholar 

  24. Mharzi, M., Daguenet, M., Daoudi, S.: Thermosolutal natural convection in a vertically layered fluid-porous medium heated from the side. Energy Convers. Manag. 41, 1065–1090 (2000)

    Article  Google Scholar 

  25. Normand, C., Azouni, A.: Penetrative convection in an internally heated layer of water near the maximum density point. Phys. Fluids A 4, 243–253 (1992)

    Article  MATH  Google Scholar 

  26. Prud’Homme, M., Jasmin, S.: Inverse solution for a biochemical heat source in a porous medium in the presence of natural convection. Chem. Eng. Sci. 61, 1667–1675 (2006)

    Article  Google Scholar 

  27. Rionero, S.: Onset of convection in porous materials with vertically stratified porosity. Acta Mech. 261–272, 222 (2011)

    MATH  Google Scholar 

  28. Rionero, S.: Absence of subcritical instabilities and global nonlinear stability for porous ternary diffusive-convective fluid mixtures. Phys. Fluids 104101, 24 (2012)

    MATH  Google Scholar 

  29. Rionero, S.: Multicomponent diffusive–convective fluid motions in porous layers: ultimately boundedness, absence of subcritical instabilities, and global stability for any number of salts. Phys. Fluids 054104, 25 (2013)

    MATH  Google Scholar 

  30. Rionero, S.: Soret effects on the onset of convection in rotating porous layers via the “auxiliary system method”. Ricerche di Matematica 62, 183–208 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Rionero, S.: Heat and mass transfer by convection in multicomponent Navier–Stokes mixtures: absence of subcritical instabilities and global nonlinear stability via the auxiliary system method. Rendiconti dell’Accademia dei Lincei: Matematica e Applicazioni 25, 369–412 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Rionero, S.: \(L^2\)-energy decay of convective nonlinear PDEs reaction-diffusion systems vis auxiliary ODE systems. Ricerche di Matematica (2015). doi:10.1007/s11587-015-0231-2

    MATH  Google Scholar 

  33. Straughan, B.: Resonant porous penetrative convection. Proc. R. Soc. Lond. A 460, 2913–2927 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  34. Straughan, B.: Stability and Wave Motion in Porous Media. Series in Applied Mathematical Sciences, vol. 165. Springer, New York (2008)

  35. Straughan, B.: Triply resonant penetrative convection. Proc. R. Soc. Lond. A 468, 3804–3823 (2012)

    Article  MathSciNet  Google Scholar 

  36. Straughan, B.: Resonant penetrative convection with an internal heat source/sink. Acta Appl. Math. 132, 561–581 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Straughan, B.: Convection with Local Thermal Non-equilibrium and Microfluidic Effects. Advances in Mechanics and Applied Mathematics, vol. 32. Springer, New York (2015)

  38. Tikhomolov, E.: Large-scale vortical flows and penetrative convection in the Sun. Nucl. Phys. A 758, 709c–712c (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Straughan.

Additional information

Communicated by Salvatore Rionero.

Results contained in the present paper have been presented at WASCOM 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Straughan, B. Importance of Darcy or Brinkman laws upon resonance in thermal convection. Ricerche mat 65, 349–362 (2016). https://doi.org/10.1007/s11587-015-0250-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11587-015-0250-z

Keywords

Mathematics Subject Classification

Navigation