Skip to main content
Log in

Porous MHD convection: stabilizing effect of magnetic field and bifurcation analysis

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

MHD convection in a horizontal porous-layer filled by a plasma, imbedded in a transverse magnetic field and heated from below, is investigated. The critical Rayleigh number is found and, in simple algebraic closed forms, conditions necessary and sufficient for the onset of steady and oscillatory convection are obtained. It is shown that the stabilizing effect of the magnetic field grows with \(Q^2\), Q being the Chandrasekhar number. The linearization principle (Rionero, Rend Lincei Mat Appl 25:368, 2014): “Decay of linear energy for any initial data implies decay of nonlinear energy at any instant” continues to hold also in the case at stake and allows to recover for the global nonlinear stability the conditions of linear stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. Dover (1981)

  2. Merkin, D.R.: Introduction to the Theory of Stability. Texts in Applied Mathematics, vol. 24. Springer, New York, xx+319 pp. (1997)

  3. Nield, D.A., Bejan, A.: Convection in Porous Media, IV edn. Springer, Berlin (2012)

    MATH  Google Scholar 

  4. Straughan, B.: The Energy Method, Stability, and Nonlinear Convection, 2nd edn, Appl. Math. Sci., vol. 91. Springer, Berlin (2004)

  5. Straughan, B.: Stability and Wave Motion in Porous Media. Springer, Berlin (2008)

    MATH  Google Scholar 

  6. Straughan, B.: Convection with Local Thermal Non-Equilibrium and Microfluidic Effects, Advances in Mechanics and Mathematics. Springer, Berlin (2015)

    Book  MATH  Google Scholar 

  7. Mulone, G., Rionero, S.: Non-linear stability analysis of the magnetic Bènard problem through the Lyapunov direct method. Arch. Rational Mech. Anal. 103, 347 (1988)

    MathSciNet  MATH  Google Scholar 

  8. Mulone, G., Rionero, S.: Necessary and sufficient conditions for nonlinear stability in the Magnetic Bénard problem. Arch. Rational Mech. Anal. 166, 197 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Rionero, S.: Absence of subcritical instabilities and global nonlinear stability for porous ternary diffusive-convective fluid mixtures. Phys. Fluids 24, 104101 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Rionero, S.: Multicomponent diffusive-convective fluid motions in porous layers: ultimately boundedness, absence of subcritical instabilities and global nonlinear stability for any number of salts. Phys. Fluids 25, 054104 (2013)

    Article  MATH  Google Scholar 

  11. Rionero, S.: Soret effects on the onset of convection in rotating porous layers via the “auxiliary system method”. Ric. Mat. 62(2), 183 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Rionero, S.: Onset of convection in rotating porous layers via a new approach. AIMS 19(7), 2279 (2014)

    MathSciNet  MATH  Google Scholar 

  13. Rionero, S.: Heat and mass transfer by convection in multicomponent Navier–Stokes mixture: absence of subcritical instabilities and global nonlinear stability via the Auxiliary System Method. Rend. Lincei Mat. Appl. 25, 368 (2014)

    MathSciNet  MATH  Google Scholar 

  14. Rudraiah, N.: Linear and non-linear magnetoconvection in a porous media. Proc. Indian Acad. Sci. (Math. Sci.) 93, 117 (1984)

    Article  MATH  Google Scholar 

  15. Chambka, Ali J.: Hydromagnetic flow and heat transfer of a heat generating fluid over a surface embedded in a porous medium. Int. Comm. Heat Mass Transfer 24, 815 (1997)

    Article  Google Scholar 

  16. Cheng, Ching-Yang: Effect of a magnetic field on heat and mass transfer by natural convection from vertical surfaces in porous media. An integral approach, Int. Comm. Heat Mass Transfer 26, 935 (1999)

    Article  Google Scholar 

  17. Postelnicu, A.: Influence of a magnetic field on heat and mass transfer by natural convection from vertical surfaces in porous media considering Soret and Dufour effects. Heat Mass Transfer 47, 1467 (2004)

    Article  MATH  Google Scholar 

  18. Mansour, M.A., El-Anssaryb, N.F., Alyb, A.M.: Effects of chemical reaction and thermal stratification on MHD free convective heat and mass transfer over a vertical stretching surface embedded in a porous media considering Soret and Dufour numbers. Chem. Eng. J. 145, 340 (2008)

    Article  Google Scholar 

  19. Grosan, T., Revnic, C., Pop, I., Ingham, D.B.: Magnetic field and internal heat generation effects on the free convection in a rectangular cavity filled with a porous medium. Int. J. Heat Mass Transfer 52, 1525 (2009)

    Article  MATH  Google Scholar 

  20. Hayat, T., Abbas, Z., Pop, I., Asghar, S.: Effects of radiation and magnetic field on the mixed convection stagnation-point flow over a vertical stretching sheet in a porous medium. Int. J. Heat Mass Transfer 53, 466 (2010)

    Article  MATH  Google Scholar 

  21. Alloui, Z., Vasseur, P., Costa, V.A.F., Sousa, A.C.M.: Effect of a non-constant magnetic field on natural convection in a horizontal porous layer heated from the bottom. J. Eng. Math. 81, 141 (2013)

    Article  MathSciNet  Google Scholar 

  22. Harfash, A.J.: Structural stability for convection models in a reacting porous medium with magnetic field effect. Ricerche Mat. 63, 1 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Harfash, A.J.: Convection in a porous medium with variable gravity field and magnetic field effects. Transp. Porous Media 103, 361 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This paper has been performed under the auspices of GNFM of INdAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florinda Capone.

Additional information

Communicated by Salvatore Rionero.

Appendix: Proof of Theorem 7

Appendix: Proof of Theorem 7

Setting

$$\begin{aligned} P^*_q=\displaystyle \sum _{n=1}^q\pi ^*_n\,,\qquad {\mathbf U}^*_q=\displaystyle \sum _{n=1}^q{{\mathbf {u}}}^*_n, \qquad {\mathbf H}^*_q=\displaystyle \sum _{n=1}^q{\mathbf h}^*_n,\qquad \varTheta ^*_q=\displaystyle \sum _{n=1}^q\theta ^*_n \end{aligned}$$
(114)

one obtains that the following initial boundary value problem holds

$$\begin{aligned}&\left\{ \begin{array}{l} {{\mathbf {U}}}^*_q=-\nabla P^*_q+{\tilde{Q}}\displaystyle {\frac{\partial {{\mathbf {H}}}^*_q}{\partial z}}+{P}^{*}_m({{\mathbf {h}}}\cdot \nabla ){{\mathbf {H}}}^*_q+R\varTheta ^*_q{\mathbf k}\\ \\ {\tilde{P}}_m\displaystyle {\frac{\partial {{\mathbf {H}}}^*_q}{\partial t}}=\varDelta {{\mathbf {H}}}^*_q+{\tilde{Q}}\displaystyle {\frac{\partial {\mathbf U}^*_q}{\partial z}}-{P}^{*}_m({{\mathbf {u}}}\cdot \nabla {\mathbf H}^*_q-{{\mathbf {h}}}\cdot \nabla {{\mathbf {U}}}^*_q) \\ \\ \displaystyle {\frac{\partial \varTheta ^*_q}{\partial t}}=RW^*_q-{\mathbf u}\cdot \nabla \varTheta ^*_q \\ \\ \nabla \cdot {{\mathbf {U}}}^*_q=0 \,, \qquad \nabla \cdot {\mathbf H}^*_q=0\end{array}\right. \end{aligned}$$
(115)
$$\begin{aligned}&{\left\{ \begin{array}{ll} ({{\mathbf {U}}}^*_q)_{t=0}=\displaystyle \sum _{n=1}^q{\mathbf u}^{(0)}_n,\,\,\, (\varTheta ^*_q)_{t=0}=\displaystyle \sum _{n=1}^q \theta ^{(0)}_n,\,\,\, ({\mathbf H}^*_q)_{t=0}=\displaystyle \sum _{n=1}^q{{\mathbf {h}}}^{(0)}_n,\\ \\ {{\mathbf {U}}}^*_q\cdot {{\mathbf {k}}}={{\mathbf {H}}}^*_q\cdot {\mathbf i}={{\mathbf {H}}}^*_q\cdot {{\mathbf {j}}}=\displaystyle {\frac{\partial ({\mathbf H}^*_q\cdot {{\mathbf {k}}})}{\partial z}}=0,\,\,\,z=0,1\,. \end{array}\right. } \end{aligned}$$
(116)

Setting

$$\begin{aligned} \bar{{\mathbf {U}}}_n= & {} \left\{ \begin{array}{ll} {{\mathbf {u}}}_n-{{\mathbf {u}}}^*_n, &{}\quad \text{ for } n=1,2,\ldots ,q,\\ \\ {{\mathbf {u}}}_n,&{}\quad \text{ for } n>q, \end{array}\right. ,\,\, \bar{\mathbf U}=\displaystyle \sum _{n=1}^\infty \bar{{\mathbf {U}}}_n \end{aligned}$$
(117)
$$\begin{aligned} {\bar{\varTheta }}_n= & {} \left\{ \begin{array}{ll} \varTheta _n-\varTheta ^*_n, &{}\quad \text{ for } n=1,2,\ldots ,q,\\ \\ \varTheta _n,&{}\quad \text{ for } n>q, \end{array}\right. ,\,\, {\bar{\varTheta }}=\displaystyle \sum _{n=1}^\infty {\bar{\varTheta }}_n \end{aligned}$$
(118)
$$\begin{aligned} \bar{{\mathbf {H}}}_n= & {} \left\{ \begin{array}{ll} {{\mathbf {h}}}_n-{{\mathbf {h}}}^*_n, &{}\quad \text{ for } n=1,2,\ldots ,q,\\ \\ {{\mathbf {h}}}_n,&{}\quad \text{ for } n>q, \end{array}\right. ,\,\, \bar{\mathbf H}=\displaystyle \sum _{n=1}^\infty \bar{{\mathbf {H}}}_n \end{aligned}$$
(119)
$$\begin{aligned} \bar{P}_n= & {} \left\{ \begin{array}{ll} \pi _n-\pi ^*_n, &{}\quad \text{ for } n=1,2,\ldots ,q,\\ \\ \pi _n,&{}\quad \text{ for } n>q, \end{array}\right. ,\,\, \bar{P}=\displaystyle \sum _{n=1}^\infty \bar{P}_n \end{aligned}$$
(120)

by virtue of (100)–(101) and (117)–(120) one obtains

$$\begin{aligned}&\left\{ \begin{array}{l}\bar{{\mathbf {U}}}=-\nabla \bar{P}+{\tilde{Q}}\displaystyle {\frac{\partial \bar{{\mathbf {H}}}}{\partial z}}+{P}^{*}_m({{\mathbf {h}}}\cdot \nabla )\bar{{\mathbf {H}}}+R{\bar{\varTheta }}{{\mathbf {k}}}\\ \\ {\tilde{P}}_m\displaystyle {\frac{\partial \bar{{\mathbf {H}}}}{\partial t}}=\varDelta \bar{{\mathbf {H}}}+{\tilde{Q}}\displaystyle {\frac{\partial \bar{\mathbf U}}{\partial z}}-{P}^{*}_m({{\mathbf {u}}}\cdot \nabla \bar{\mathbf H}-{{\mathbf {h}}}\cdot \nabla \bar{{\mathbf {U}}}) \\ \\ \displaystyle {\frac{\partial {\bar{\varTheta }}}{\partial t}}=R\bar{W}-{\mathbf u}\cdot \nabla {\bar{\varTheta }} \\ \\ \nabla \cdot \bar{{\mathbf {U}}}=0 \,, \qquad \nabla \cdot \bar{{\mathbf {H}}}=0\end{array}\right. \end{aligned}$$
(121)
$$\begin{aligned}&{\left\{ \begin{array}{ll} (\bar{{\mathbf {U}}})_{t=0}=\displaystyle \sum _{n=1}^q{{\mathbf {u}}}^{(0)}_n,\,\,\, ({\bar{\varTheta }})_{t=0}=\displaystyle \sum _{n=1}^q \theta ^{(0)}_n,\,\,\, (\bar{{\mathbf {H}}})_{t=0}=\displaystyle \sum _{n=1}^q{{\mathbf {h}}}^{(0)}_n,\\ \\ \bar{{\mathbf {U}}}\cdot {{\mathbf {k}}}=\bar{{\mathbf {H}}}\cdot {\mathbf i}=\bar{{\mathbf {H}}}\cdot {{\mathbf {j}}}=\displaystyle {\frac{\partial (\bar{\mathbf H}\cdot {{\mathbf {k}}})}{\partial z}}=0,\,\,\,z=0,1 \,. \end{array}\right. } \end{aligned}$$
(122)

Since

$$\begin{aligned} \displaystyle \lim _{q\rightarrow \infty }\displaystyle \sum _{n=q+1}^\infty \bar{\mathbf u}^{(0)}_n=\displaystyle \lim _{q\rightarrow \infty }\displaystyle \sum _{n=q+1}^\infty {\bar{\theta }}^{(0)}_n=\displaystyle \lim _{q\rightarrow \infty }\displaystyle \sum _{n=q+1}^\infty \bar{\mathbf h}^{(0)}_n=0 \end{aligned}$$
(123)

and (120) under zero initial boundary conditions admits only the null solution, it follows that

$$\begin{aligned} \displaystyle \lim _{q\rightarrow \infty }({{\mathbf {u}}}-\bar{\mathbf U}_q)=\displaystyle \lim _{q\rightarrow \infty }(\theta -{\bar{\varTheta }}_q)=\displaystyle \lim _{q\rightarrow \infty }({{\mathbf {H}}}-\bar{\mathbf H}_q)=0 \end{aligned}$$
(124)

and the theorem is proved.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Capone, F., Rionero, S. Porous MHD convection: stabilizing effect of magnetic field and bifurcation analysis. Ricerche mat. 65, 163–186 (2016). https://doi.org/10.1007/s11587-016-0258-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11587-016-0258-z

Keywords

Mathematics Subject Classification

Navigation