Skip to main content
Log in

Onset of linear instability driven by electric currents in magnetic systems: a Lagrangian approach

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

A Lagrangian formalism is used to compute the onset of linear instability in magnetic heterostructures subject to two competing dissipative phenomena: the intrinsic damping and the current-induced spin-transfer-torque. The small-amplitude precessional dynamics undergone by the magnetization vector at the excitation threshold is described in terms of linearized Lagrange equations which are recast as a complex generalized non-Hermitian eigenvalue problem. The numerical solution of such a problem allows to characterize those magnetic normal modes which become unstable when the “negative” losses induced by the electric current fully compensate the intrinsic “positive” ones. An illustrative example is also carried out in order to test the capability of the proposed method to determine accurately such an instability threshold when geometric or material properties are varied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Slonczewski, J.: Excitation of spin waves by an electric current. J. Magn. Magn. Mater. 195, L261–L268 (1999)

    Article  Google Scholar 

  2. Madami, M., et al.: Direct observation of a propagating spin wave induced by spin transfer torque. Nat. Nanotech. 6, 635–638 (2011)

    Article  Google Scholar 

  3. Parkin, S.S.P., Hayashi, M., Thomas, L.: Magnetic domain-wall racetrack memory. Science 320, 190–194 (2008)

    Article  Google Scholar 

  4. Consolo, G., Curro’, C., Martinez, E., Valenti, G.: Mathematical modeling and numerical simulation of domain wall motion in magnetic nanostrips with crystallographic defects. Appl. Math. Modell. 36, 4876–4886 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. De Maio, U., Faella, L., Soueid, S.: Quasy-stationary ferromagnetic thin films in degenerated cases. Ricerche Mat. 63, 225–237 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Consolo, G., Lopez-Diaz, L., Azzerboni, B., Krivorotov, I., Tiberkevich, V., Slavin, A.: Excitation of spin waves by a current-driven magnetic nanocontact in a perpendicularly magnetized waveguide. Phys. Rev. B 88, 014417 (2013)

    Article  Google Scholar 

  7. Consolo, G., Curro’, C., Valenti, G.: Quantitative estimation of the spin-wave features supported by a spin-torque driven magnetic waveguide. J. Appl. Phys. 116, 213908 (2014)

    Article  Google Scholar 

  8. McMichael, R.D., Stiles, M.D.: Magnetic normal modes of nanoelements. J. Appl. Phys. 97, 10J901 (2005)

    Article  Google Scholar 

  9. Torres, L., et al.: Micromagnetic modal analysis of spin-transfer-driven ferromagnetic resonance of individual nanomagnets. J. Appl. Phys. 101, 09A502 (2007)

    Google Scholar 

  10. Siracusano, G., et al.: Non-stationary magnetization dynamics driven by spin-transfer torque. Physical Review B 79, 104438 (2009)

    Article  Google Scholar 

  11. Slonczewski, J.C.: Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996)

    Article  Google Scholar 

  12. Grimsditch, M., et al.: Magnetic normal modes in ferromagnetic nano- particles: a dynamical matrix approach. Phys. Rev. B 70, 054409 (2004)

    Article  Google Scholar 

  13. Brown Jr., W.F.: Micromagnetics. Interscience Publishers, New York (1963)

    MATH  Google Scholar 

  14. Morrish, A.H.: The Physical Principles of Magnetism, pp. 539–640. IEEE Press, New York (2001)

    Book  Google Scholar 

  15. Döring, W.: On the inertia of walls between Weiss domains. Z. Naturforsch 3a, 373379 (1948)

    Google Scholar 

  16. Goldstein, H., Poole, C., Safko, J.: Classical Mechanics. Addison-Wesley, San Francisco, pp. 184–275, 334–367 (2001)

  17. Consolo, G., Gubbiotti, G., Giovannini, L., Zivieri, R.: Lagrangian formulation of the linear autonomous magnetization dynamics in spin-torque oscillators. Appl. Math. Comput. 217, 8204–8215 (2011)

    MathSciNet  MATH  Google Scholar 

  18. Teodorescu, P.P.: Mechanical Systems, Classical Models, Vol. III: Analytical Mechanics. Springer, New York (2002)

    Google Scholar 

  19. Zuoqi, H., et al.: Simulation Study on the Information Storage Mechanism of STT-RAM. IEEE Conference Publications, pp. 1–4 (2013)

  20. Romeo, A., et al.: A numerical solution of the magnetization reversal modeling in a permalloy thin film using fifth-order Runge–Kutta method with adaptive step size control. Phys. B 403, 464–468 (2008)

    Article  MathSciNet  Google Scholar 

  21. Slavin, A., Tiberkevich, V.: Nonlinear Auto-oscillator theory of microwave generation by spin-polarized current. IEEE Trans. Magn. 45, 1875 (2009)

    Article  Google Scholar 

  22. Chen, D.X., Pardo, E., Sanchez, A.: Fluxmetric and magnetometric demagnetizing factors for cylinders. J. Magnet. Magnet. Mater. 306, 135–146 (2006)

    Article  Google Scholar 

  23. Huang, H.B., Ma, X.Q., Liu, Z.H., Zhao, C.P., Chen, L.Q.: Modelling current-induced magnetization switching in Heusler alloy \({\rm Co_2}\)FeAl-based spin-valve nanopillar. J. Appl. Phys. 115, 133905 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

The author gratefully thanks fruitful discussions with R. Zivieri and G. Valenti. The work was partially supported by National Group of Mathematical Physics (GNFM-INdAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giancarlo Consolo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Consolo, G. Onset of linear instability driven by electric currents in magnetic systems: a Lagrangian approach. Ricerche mat 65, 413–422 (2016). https://doi.org/10.1007/s11587-016-0264-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11587-016-0264-1

Keywords

Mathematics Subject Classification

Navigation