Skip to main content
Log in

Wavefront invasion for a chemotaxis model of Multiple Sclerosis

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

In this work we study wavefront propagation for a chemotaxis reaction-diffusion system describing the demyelination in Multiple Sclerosis. Through a weakly non linear analysis, we obtain the Ginzburg–Landau equation governing the evolution of the amplitude of the pattern. We validate the analytical findings through numerical simulations. We show the existence of traveling wavefronts connecting two different steady solutions of the equations. The proposed model reproduces the progression of the disease as a wave: for values of the chemotactic parameter below threshold, the wave leaves behind a homogeneous plaque of apoptotic oligodendrocytes. For values of the chemotactic coefficient above threshold, the model reproduces the formation of propagating concentric rings of demyelinated zones, typical of Baló’s sclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Baló, J.: Encephalitis periaxialis concentrica. Archiv. Neurol. Psychiatr. 19(2), 242–264 (1928)

    Article  MathSciNet  Google Scholar 

  2. Barnett, M.H., Parratt, J.D.E., Pollard, J.D., Prineas, J.W.: MS: is it one disease? Int. MS J. 16(2), 57–65 (2009)

    Google Scholar 

  3. Barresi, R., Bilotta, E., Gargano, F., Lombardo, M.C., Pantano, P., Sammartino, M.: Demyelination patterns in a mathematical model of Multiple Sclerosis. Submitted (2016)

  4. Bilotta, E., Pantano, P.: Emergent patterning phenomena in \(2\)D cellular automata. Artif. Life 11(3), 339–362 (2005)

    Article  Google Scholar 

  5. Bozzini, B., Gambino, G., Lacitignola, D., Lupo, S., Sammartino, M., Sgura, I.: Weakly nonlinear analysis of Turing patterns in a morphochemical model for metal growth. Comp. Math. Appl. 70(8), 1948–1969 (2015)

    Article  MathSciNet  Google Scholar 

  6. Cerasa, A., Bilotta, E., Augimeri, A., Cherubini, A., Pantano, P., Zito, G., Lanza, P., Valentino, P., Gioia, M., Quattrone, A.: A cellular neural network methodology for the automated segmentation of multiple sclerosis lesions. J. Neurosci. Methods 203(1), 193–199 (2012)

    Article  Google Scholar 

  7. Chalmers, A., Cohen, A., Bursill, C., Myerscough, M.: Bifurcation and dynamics in a mathematical model of early atherosclerosis: how acute inflammation drives lesion development. J. Math. Biol. 71(6–7), 1451–1480 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dolak, Y., Schmeiser, C.: The Keller-Segel model with logistic sensitivity function and small diffusivity. SIAM J. Appl. Math. 66(1), 286–308 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gambino, G., Lombardo, M., Sammartino, M.: Turing instability and traveling fronts for a nonlinear reaction-diffusion system with cross-diffusion. Math. Comp. Simul. 82(6), 1112–1132 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gambino, G., Lombardo, M., Sammartino, M., Sciacca, V.: Turing pattern formation in the Brusselator system with nonlinear diffusion. Phys. Rev. Stat. Nonlinear Soft Matter Phys. 88(4), 042925 (2013)

  11. Han, Y., Li, Z., Zhang, S., Ma, M.: Wavefront invasion for a volume-filling chemotaxis model with logistic growth. Comp. Math. Appl. (2016)

  12. Hillen, T., Painter, K.: Global existence for a parabolic chemotaxis model with prevention of overcrowding. Adv. Appl. Math. 26(4), 280–301 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hillen, T., Painter, K.J.: A user’s guide to PDE models for chemotaxis. J. Math. Biol. 58(1–2), 183–217 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Keller, E., Segel, L.: Model for chemotaxis. J. Theor. Biol. 30(2), 225–234 (1971)

    Article  MATH  Google Scholar 

  15. Khonsari, R., Calvez, V.: The origins of concentric demyelination: Self-organization in the human brain. PLoS One 2(1), e150 (2007)

    Article  Google Scholar 

  16. Lassmann, H.: Multiple sclerosis pathology: evolution of pathogenetic concepts. Brain Pathol. 15(3), 217–222 (2005)

    Article  Google Scholar 

  17. Luca, M., Chavez-Ross, A., Edelstein-Keshet, L., Mogilner, A.: Chemotactic signaling, microglia, and Alzheimer’s disease senile plaques: is there a connection? Bull. Math. Biol. 65(4), 693–730 (2003)

    Article  MATH  Google Scholar 

  18. Lucchinetti, C., Brück, W., Parisi, J., Scheithauer, B., Rodriguez, M., Lassmann, H.: Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann. Neurol. 47(6), 707–717 (2000)

    Article  Google Scholar 

  19. Mulone, G., Rionero, S., Wang, W.: The effect of density-dependent dispersal on the stability of populations. Nonlinear Anal. Theory Methods Appl. 74(14), 4831–4846 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mulone, G., Straughan, B.: Nonlinear stability for diffusion models in biology. SIAM J. Appl. Math. 69(6), 1739–1758 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Penner, K., Ermentrout, B., Swigon, D.: Pattern formation in a model of acute inflammation. SIAM J. Appl. Dyn. Syst. 11(2), 629–660 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Quinlan, R., Straughan, B.: Decay bounds in a model for aggregation of microglia: application to Alzheimer’s disease senile plaques. Proc. Royal Soc. A Math. Phys. Eng. Sci. 461(2061), 2887–2897 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rionero, S.: Multicomponent diffusive-convective fluid motions in porous layers: ultimately boundedness, absence of subcritical instabilities, and global nonlinear stability for any number of salts. Phys Fluids 25(5), 054104 (2013)

    Article  MATH  Google Scholar 

  24. Rionero, S.: Soret effects on the onset of convection in rotating porous layers via the “auxiliary system method”. Ricerche di Matematica 62(2), 183–208 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Rionero, S.: \({L}^2\)-energy decay of convective nonlinear pdes reactiondiffusion systems via auxiliary odes systems. Ricerche di Matematica 64(2), 251–287 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rionero, S., Vitiello, M.: Stability and absorbing set of parabolic chemotaxis model of escherichia coli. Nonlinear Anal. Model. Control 18(2), 210–226 (2013)

    MathSciNet  MATH  Google Scholar 

  27. Sherratt, J.: Wavefront propagation in a competition equation with a new motility term modelling contact inhibition between cell populations. Proc. Royal Soc. A Math. Phys. Eng. Sci. 456(2002), 2365–2386 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wrzosek, D.: Global attractor for a chemotaxis model with prevention of overcrowding. Nonlinear Anal. Theory Methods Appl. 59(8), 1293–1310 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work has been partially supported by National Group of Mathematical Physics (GNFM-INDAM) through a “Progetto Giovani” grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Barresi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barresi, R., Bilotta, E., Gargano, F. et al. Wavefront invasion for a chemotaxis model of Multiple Sclerosis. Ricerche mat 65, 423–434 (2016). https://doi.org/10.1007/s11587-016-0265-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11587-016-0265-0

Keywords

Mathematics Subject Classification

Navigation