Skip to main content
Log in

Complex singularities in KdV solutions

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

In the small dispersion regime, the KdV solution exhibits rapid oscillations in its spatio-temporal dependence. We show that these oscillations are caused by the presence of complex singularities that approach the real axis. We give a numerical estimate of the asymptotic dynamics of the poles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ablowitz, M., Clarkson, P.: Solitons. In: Nonlinear Evolution Equations and Inverse Scattering Transform. Cambridge University Press, New York (1991)

  2. Baker, G., Graves-Morris, P.: Padé Approximants. Cambridge University Press, United States of America (1996)

    Book  MATH  Google Scholar 

  3. Borgese, G., Vena, S., Pantano, P., Pace, C., Bilotta, E.: Simulation, modeling, and analysis of soliton waves interaction and propagation in CNN transmission lines for innovative data communication and processing. Discrete Dynam. Nat. Soc. 2015, 1–13, Article ID 139238 (2015)

  4. Caflisch, R.: Singularity formation for complex solutions of the 3D incompressible Euler equations. Phisica D 67, 1–18 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Caflisch, R., Gargano, F., Sammartino, M., Sciacca, V.: Complex singularities and pdes. Rivista di Matematica della Universita di Parma 6(1), 69–133 (2015)

    MathSciNet  MATH  Google Scholar 

  6. Camassa, R., Holm, D.L.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71(11), 1661–1664 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Camassa, R., Holm, D.L., Levermore, C.D.: Long-time effects of bottom topography in shallow water. Physica D. Nonlinear Phenom. 98(2–4), 258–286 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Claeys, T., Grava, T.: Universality of the break-up profile for the KdV equation in the small dispersion limit using the Riemann-Hilbert approach. Commun. Math. Phys. 286(3), 979–1009 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Claeys, T., Grava, T.: Painlevé II asymptotics near the leading edge of the oscillatory zone for the Korteweg–de Vries equation in the small-dispersion limit. Commun. Pure Appl. Math. 63(2), 203–232 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Claeys, T., Grava, T.: Solitonic asymptotics for the Korteweg–de Vries equation in the small dispersion limit. SIAM J. Math. Anal. 42(5), 2132–2154 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Coclite, G., Gargano, F., Sciacca, V.: Analytic solutions and singularity formation for the peakon b-family equations. Acta Appl. Math. 122, 419–434 (2012)

    MathSciNet  MATH  Google Scholar 

  12. Deift, P., Venakides, S., Zhou, X.: New results in small dispersion KdV by an extension of the steepest descent method for Riemann–Hilbert problems. Internat. Math. Res. Not. 1997(6), 286–299 (1997)

    Article  MathSciNet  Google Scholar 

  13. Della Rocca, G., Lombardo, M., Sammartino, M., Sciacca, V.: Singularity tracking for Camassa–Holm and Prandtl’s equations. Appl. Numer. Math. 56(8), 1108–1122 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dubrovin, B.: On Hamiltonian perturbations of hyperbolic systems of conservation laws. II. Universality of critical behaviour. Commun. Math. Phys. 267(1), 117–139 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ercolani, N., Gabitov, I., Levermore, C., Serre, D.: Singular limits of dispersive waves, B, vol. 320. NATO ASI (1994)

  16. Ercolani, N.M., Levermore, C.D., Zhang, T.: The behavior of the Weyl function in the zero-dispersion KdV limit. Commun. Math. Phys. 183(1), 119–143 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fournier, J.D., Frisch, U.: L’équation de Burgers déterministe et statistique. J. Méc. Théor. Appl. 2(5), 699–750 (1983)

    MathSciNet  MATH  Google Scholar 

  18. Frisch, U., Matsumoto, T., Bec, J.: Singularities of Euler flow? Not out of the blue!. J. Stat. Phys. 113, 761–781 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gargano, F., Sammartino, M., Sciacca, V.: Singularity formation for Prandtl’s equations. Physica D Nonlinear Phenom. 238(19), 1975–1991 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gargano, F., Sammartino, M., Sciacca, V.: High Reynolds number Navier–Stokes solutions and boundary layer separation induced by a rectilinear vortex. Comput. Fluids 52, 73–91 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gargano, F., Sammartino, M., Sciacca, V., Cassel, K.W.: Analysis of complex singularities in high-Reynolds-number Navier–Stokes solutions. J. Fluid Mech. 747, 381–421 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gargano, F., Sammartino, M., Sciacca, V., Cassel, K.W.: Viscous-inviscid interactions in a boundary-layer flow induced by a vortex array. Acta Appl. Math. 132, 295–305 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Grava, T., Klein, C.: Numerical solution of the small dispersion limit of Korteweg–de Vries and Whitham equations. Commun. Pure Appl. Math. 60(11), 1623–1664 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Grava, T., Klein, C.: Numerical study of a multiscale expansion of Korteweg–de Vries and Camassa–Holm equation. In: Integrable Systems and Random Matrices. Contemp. Math., vol. 458, pp. 81–98. American Mathematical Society, Providence (2008)

  25. Grava, T., Klein, C.: Numerical study of a multiscale expansion of the Korteweg–de Vries equation and Painlevé-II equation. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 464(2091), 733–757 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Grava, T., Klein, C.: A numerical study of the small dispersion limit of the Korteweg–de Vries equation and asymptotic solutions. Phys. D 241(23–24), 2246–2264 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gurevich, A.G., Pitaevskii, L.P.: Non stationary structure of a collisionless shock waves. JEPT Lett. 17, 193–195 (1973)

    Google Scholar 

  28. Hirota, R.: Exact solution of the Korteweg–de Vries equation for multiple collisions of solitons. Phys. Rev. Lett. 27, 1192–1194 (1971)

    Article  MATH  Google Scholar 

  29. Klein, C., Roidot, K.: Numerical study of shock formation in the dispersionless Kadomtsev–Petviashvili equation and dispersive regularizations. Phys. D 265, 1–25 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lax, P.D., Levermore, C.D.: The small dispersion limit of the Korteweg–de Vries equation. I. Commun. Pure Appl. Math. 36(3), 253–290 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lax, P.D., Levermore, C.D.: The small dispersion limit of the Korteweg-de Vries equation. II. Commun. Pure Appl. Math. 36(5), 571–593 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lax, P.D., Levermore, C.D.: The small dispersion limit of the Korteweg–de Vries equation. III. Commun. Pure Appl. Math. 36(6), 809–829 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  33. Levermore, C.D., Sammartino, M.: A shallow water model with eddy viscosity for basins with varying bottom topography. Nonlinearity 14(6), 1493–1515 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  34. Malakuti, K., Caflisch, R.E., Siegel, M., Virodov, A.: Detection of complex singularities for a function of several variables. IMA J. Appl. Math. 78(4), 714–728 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Olver, S.: Numerical solution of Riemann–Hilbert problems: Painlevé II. Found. Comput. Math. 11(2), 153–179 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Pauls, W., Frisch, U.: A Borel transform method for locating singularities of Taylor and Fourier series. J. Stat. Phys. 127(6), 1095–1119 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Pauls, W., Matsumoto, T., Frisch, U., Bec, J.: Nature of complex singularities for the 2D Euler equation. Physica D 219(1), 40–59 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  38. Rogers, C., Shadwick, W.: Backlund Transformations and Their Applications. Academic Press, New York (1982)

    MATH  Google Scholar 

  39. Roidot, K., Mauser, N.: Numerical study of the transverse stability of NLS soliton solution in several classes of NLS-type equations (2015). arXiv:1401.5349

  40. Sciacca, V., Schonbek, M.E., Sammartino, M.: Long time behavior for a dissipative shallow water model. Annales de l’Institut Henri Poincare (C) Non Linear Analysis (2016). arXiv:1310.8174. (in press)

  41. Senouf, D.: Dynamics and condensation of complex singularities for Burgers’ equation. I. SIAM J. Math. Anal. 28(6), 1457–1489 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  42. Senouf, D.: Dynamics and condensation of complex singularities for Burgers’ equation. II. SIAM J. Math. Anal. 28(6), 1490–1513 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  43. Senouf, D., Caflisch, R., Ercolani, N.: Pole dynamics and oscillations for the complex Burgers equation in the small-dispersion limit. Nonlinearity 9(6), 1671–1702 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  44. Sulem, C., Sulem, P.L., Frisch, H.: Tracing complex singularities with spectral methods. J. Comput. Phys. 50(1), 138–161 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  45. Trefethen, L.N.: Spectral Methods in MATLAB, Software, Environments, and Tools, vol. 10. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2000)

    Book  Google Scholar 

  46. Venakides, S.: The Korteweg–de Vries equation with small dispersion: higher order Lax–Levermore theory. Commun. Pure Appl. Math. 43(3), 335–361 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  47. Wang, M., Li, X., Zhang, J.: The \(\left( \frac{G^\prime }{G} \right)\)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 372(4), 417–423 (2008)

    Article  MathSciNet  Google Scholar 

  48. Weideman, J.A.C.: Computing the dynamics of complex singularities of nonlinear PDEs. SIAM J. Appl. Dyn. Syst. 2(2), 171–186 (2003). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  49. Weiss, J., Tabor, M., Carnevale, G.: The Painlevé property for partial differential equations. J. Math. Phys. 24(3), 522–526 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  50. Whitham, G.: Linear and Nonlinear Waves. Wiley, New York (1974)

    MATH  Google Scholar 

  51. Zabusky, N.J., Kruskal, M.D.: Interaction of “Solitons” in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15, 240–243 (1965)

    Article  MATH  Google Scholar 

  52. Zayed, E.M.E., Alurrfi, K.A.E.: On solving two higher-order nonlinear PDEs describing the propagation of optical pulses in optic fibers using the \(\left( \frac{G^\prime }{G},\frac{1}{G}\right)\)-expansion method. Ricerche di Matematica 64(1), 167–194 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  53. Zedan, H.A.: \(\left(\frac{G^\prime }{G}\right)\)-expansion method for the generalized Zakharov equations. Ricerche di Matematica 60(2), 203–217 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The work of F.G., G.P. and V.S. was partially supported by an INdAM-GNFM 2015 Progetto Giovani grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Sciacca.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gargano, F., Ponetti, G., Sammartino, M. et al. Complex singularities in KdV solutions. Ricerche mat 65, 479–490 (2016). https://doi.org/10.1007/s11587-016-0269-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11587-016-0269-9

Keywords

Mathematics Subject Classification

Navigation