Skip to main content
Log in

On a class of moving boundary problems for the potential mkdV equation: conjugation of Bäcklund and reciprocal transformations

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

A class of moving boundary problems for the solitonic potential mkdV equation is set down which is reciprocal to generalised Stefan-type problems that admit exact solution in terms of a Painlevé II symmetry reduction. The latter allows the construction of the exact solution of the moving boundary problems via the iterated action of a Bäcklund transformation. This results in solution representation in terms of Yablonski–Vorob’ev polynomials. It is indicated how the results may be extended, via a novel reciprocal link, to moving boundary problems for a canonical solitonic equation generated as a member of the WKI inverse scattering system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Rubenstein, L.I.: The Stefan Problem. American Mathematical Society Translations, vol. 27. American Mathematical Society, Providence (1971)

  2. Tarzia, D.A.: A bibliography on moving-free boundary wave problems for the heat diffusion equation. Stefan Probl. MAT Ser. A 2, 1–297 (2000)

    Google Scholar 

  3. Rogers, C.: Application of a reciprocal transformation to a two-phase Stefan problem. J. Phys. A Math. Gen. 18, L105–L109 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  4. Rogers, C.: On a class of moving boundary value problems in nonlinear heat conduction. Application of a Bäcklund transformation. Int. J. Nonlinear Mech. 21, 249–256 (1986)

    Article  MATH  Google Scholar 

  5. Storm, M.L.: Heat equations in simple metals. J. Appl. Phys. 22, 940–951 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  6. Rogers, C., Guo, B.Y.: A note on the onset of melting in a class of simple metals. Conditions on the applied boundary flux. Acta Math. Sci. 8, 425–430 (1988)

    MathSciNet  MATH  Google Scholar 

  7. Rogers, C.: On a class of reciprocal Stefan moving boundary problems. Zeit. Ang. Math. Phys. 66, 2069–2079 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ablowitz, M.J., De Lillo, S.: On a Burgers-Stefan problem. Nonlinearity 13, 471–478 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fokas, A.S., Rogers, C., Schief, W.K.: Evolution of methacrylate distribution during wood saturation. A nonlinear moving boundary problem. Appl. Math. Lett. 18, 321–328 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Swenson, J.B., Voller, V.R., Paola, C., Parker, G., Marr, J.G.: Fluvio-deltaic sedimentation: a generalised Stefan problem. Eur. J. Appl. Math. 11, 433–452 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Salva, N.N., Tarzia, D.A.: Explicit solution for a Stefan problem with variable latent heat and constant heat flux boundary conditions. J. Math. Anal. Appl. 379, 240–244 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Doronin, G.G., Larkin, N.A.: KdV equation in domains with moving boundaries. J. Math. Anal. Appl. 328, 503–517 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Vasconcelos, G.L., Kadanoff, L.P.: Stationary solutions for the Saffman–Taylor problem with surface tension. Phys. Rev. A 44, 6490–6495 (1991)

    Article  Google Scholar 

  14. Vassiliou, P.J.: Harry Dym equation. In: Hazelwinkel, M. (ed.) Encyclopaedia of Mathematics. Springer, Berlin (2001)

  15. Rogers, C.: Reciprocal relations in non-steady one-dimensional gasdynamics. Zeit. Angew. Math. Phys. 19, 58–63 (1968)

    Article  MATH  Google Scholar 

  16. Rogers, C., Wong, P.: On reciprocal Bäcklund transformations of inverse scattering schemes. Phys. Scr. 30, 10–14 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  17. Loewner, C.: Generation of solutions of systems of partial differential equations by composition of infinitesimal Bäcklund transformations. J. Anal. Math. 2, 219–242 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  18. Power, G., Rogers, C., Osborn, R.A.: Bäcklund and generalised legendre transformations in gasdynamics. Zeit. Ang. Math. Mech. 49, 333–340 (1969)

    Article  MATH  Google Scholar 

  19. Rogers, C., Shadwick, W.F.: Bäcklund Transformations and Their Applications. Mathematics in Science and Engineering Series. Academic Press, New York (1982)

  20. Konopelchenko, B., Rogers, C.: On generalised Loewner systems: novel integrable equations in 2+1-dimensions. J. Math. Phys. 34, 214–242 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  21. Rogers, C., Schief, W.K.: Bäcklund and Darboux Transformations. Geometry and Modern Applications in Soliton Theory. In: Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2002)

  22. Wadati, M., Konno, K., Ichikawo, Y.H.: New integrable nonlinear evolution equations. J. Phys. Soc. Jpn 47, 1698–1700 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rogers, C., Nucci, M.C.: On reciprocal Bäcklund transformations and the Korteweg-de Vries hierarchy. Phys. Scr. 33, 289–292 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  24. Schief, W.K., Rogers, C.: Binormal motion of curves of constant curvature and torsion, generation of soliton surfaces. Proc. R. Soc. Lond. A455, 3163–3188 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Rogers, C., Schief, W.K.: Intrinsic geometry of the NLS equation and its auto-Bäcklund transformation. Stud. Appl. Math. 101, 267–287 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hasimoto, H.: A soliton on a vortex filament. J. Fluid Mech. 51, 477–485 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rogers, C.: Moving boundary problems for the Harry Dym equation and its reciprocal associates. Zeit. Ang. Math. Phys. (2015) (to be published)

  28. Rogers, C., Bassom, A., Schief, W.K.: On a Painlevé II model in steady electrolysis: application of a Bäcklund transformation. J. Math. Anal. Appl. 240, 367–381 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. Bass, L.K., Nimmo, J., Rogers, C., Schief, W.K.: Electrical structures of interfaces. A Painlevé II model. Proc. R. Soc. Lond. A466, 2117–2136 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Conte, R., Rogers, C., Schief, W.K.: Painlevé structure of a multi-ion electrodiffusion system. J. Phys. A Math. Theor. 40, F1031–F1040 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lukashevich, N.A.: The second Painlevé equation. Diff. Equ. 7, 853–854 (1971)

    MATH  Google Scholar 

  32. Conte, R. (ed.): The Painlevé Property: One Century Later. Springer, New York (1999)

    MATH  Google Scholar 

  33. Yablonski, A.I.: On rational solutions of the second Painlevé equations. Vesti. Akad. Nauk. BSSR Ser. Fiz. Tkh. Nauk. 3, 30–35 (1959)

    Google Scholar 

  34. Keller, J.B.: Melting and freezing at constant speed. Phys. Fluids 92, 2013 (1986)

    Article  Google Scholar 

  35. Ablowitz, M.J., Kaup, D.J., Newell, A.C., Segur, H.: The inverse scattering transform Fourier analysis for nonlinear problems. Stud. Appl. Math. 53, 249–315 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  36. Konno, K., Ichikawa, Y.H., Wadati, M.: A loop soliton propagating along a stretched rope. J. Phys. Soc. Jpn. 50, 1025–1026 (1981)

    Article  MathSciNet  Google Scholar 

  37. Schafer, T., Wayne, C.E.: Propagation of ultro-short optical pulses in cubic nonlinear media. Phys. D 196, 90–105 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  38. Rogers, C., Schief, W.K., Szereszewski, A.: Loop soliton interaction in an integrable nonlinear telegraphy model: reciprocal and Bäcklund transformations. J. Phys. A Math. Theor. 43, 385210 (16pp) (2010)

  39. Oevel, W., Rogers, C.: Gauge transformations and reciprocal links in 2+1-dimensions. Rev. Math. Phys. 5, 299–330 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  40. Donato, A., Ramgulam, U., Rogers, C.: The 3+1-dimensional Monge-Ampére equation in discontinuity wave theory: application of a reciprocal transformation. Meccanica 27, 257–262 (1992)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin Rogers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rogers, C. On a class of moving boundary problems for the potential mkdV equation: conjugation of Bäcklund and reciprocal transformations. Ricerche mat 65, 563–577 (2016). https://doi.org/10.1007/s11587-016-0275-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11587-016-0275-y

Keywords

Mathematics Subject Classification

Navigation