Skip to main content
Log in

Discrete-time models for releases of sterile mosquitoes with Beverton–Holt-type of survivability

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

In this paper, we formulate discrete-time mathematical models for the interactive wild and sterile mosquitoes. Instead of the Ricker-type of nonlinearity for the survival functions, we assume the Beverton–Holt-type in these models. We consider three different strategies for the releases of sterile mosquitoes and investigate the model dynamics. Threshold values for the releases of sterile mosquitoes are derived for all of the models that determine whether the wild mosquitoes are wiped out or coexist with the sterile mosquitoes. Numerical examples are given to demonstrate the dynamics of the models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Allee, W.C.: The Social Life of Animals, 2nd edn. Beacon Press, Boston (1958)

    Google Scholar 

  2. Alphey, L., Benedict, M., Bellini, R., Clark, G.G., Dame, D.A., Service, M.W., Dobson, S.L.: Sterile-insect methods for control of mosquito-borne diseases: an analysis. Vector Borne Zoonotic Dis. 10, 295–311 (2010)

    Article  Google Scholar 

  3. Barclay, H.J.: The sterile insect release method for species with two-stage life cycles. Res. Popul. Ecol. 21, 165–180 (1980)

    Article  Google Scholar 

  4. Barclay, H.J.: Pest population stability under sterile releases. Res. Popul. Ecol. 24, 405–416 (1982)

    Article  MathSciNet  Google Scholar 

  5. Barclay, H.J.: Modeling incomplete sterility in a sterile release program: interactions with other factors. Popul. Ecol. 43, 197–206 (2001)

    Article  Google Scholar 

  6. Barclay, H.J.: Mathematical models for the use of sterile insects. In: Dyck, V.A., Hendrichs, J., Robinson, A.S. (eds.) Sterile Insect Technique. Principles and Practice in Area-Wide Integrated Pest Management, pp. 147–174. Springer, Heidelberg (2005)

    Google Scholar 

  7. Barclay, H.J., Mackuer, M.: The sterile insect release method for pest control: a density dependent model. Environ. Entomol. 9, 810–817 (1980)

    Article  Google Scholar 

  8. Bartlett, A.C., Staten, R.T.: Sterile Insect Release Method and other Genetic Control Strategies. Radcliffe’s IPM World Textbook (1996) http://ipmworld.umn.edu/chapters/bartlett.htm

  9. Beverton, R.J.H., Holt, S.J.: On the Dynamics of Exploited Fish Populations, Volume 19 of Fishery Investigations (Great Britain, Ministry of Agriculture, Fisheries, and Food). HM Stationery office, London (1957)

    Google Scholar 

  10. Bohner, M., Warth, H.: The Beverton–Holt dynamic equation. Appl. Anal. 86, 1007–1015 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cai, L., Ai, S., Li, J.: Dynamics of mosquitoes populations with different strategies for releasing sterile mosquitoes. SIAM J. Appl. Math. 74, 1786–1809 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dennis, B.: Allee effects: population growth, critical density, and the chance of extinction. Nat. Res. Model. 3, 481–538 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dumont, Y., Tchuenche, J.M.: Mathematical studies on the sterile insect technique for the Chikungunya disease and Aedes albopictus. J. Math. Biol. 65, 809–854 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dye, C.: Intraspecific competition amongst larval Aedes aegypti: food exploitation or chemical interference. Ecol. Entomol. 7, 39–46 (1982)

    Article  Google Scholar 

  15. Elaydi, S.: An Introduction to Difference Equations, 3rd edn. Springer, London (2005)

    MATH  Google Scholar 

  16. Elaydi, S.: Discrete Chaos: With Applications in Science and Engineering, 2nd edn. CRC Press, Boca Raton (2007)

    Google Scholar 

  17. Esteva, L., Yang, H.M.: Mathematical model to assess the control of Aedes aegypti mosquitoes by the sterile insect technique. Math. Biosci. 198, 132–147 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fister, K.R., McCarthy, M.L., Oppenheimer, S.F., Collins, C.: Optimal control of insects through sterile insect release and habitat modification. Math. Biosci. 244, 201–212 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Floresa, J.C.: A mathematical model for wild and sterile species in competition: immigration. Phys. A 328, 214–224 (2003)

    Article  MathSciNet  Google Scholar 

  20. Gleiser, R.M., Urrutia, J., Gorla, D.E.: Effects of crowding on populations of Aedes albifasciatus larvae under laboratory conditions. Entomol. Exp. Appl. 95, 135–140 (2000)

    Article  Google Scholar 

  21. Li, J.: Simple mathematical models for interacting wild and transgenic mosquito populations. Math. Biosci. 189, 39–59 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, J.: Simple stage-structured models for wild and transgenic mosquito populations. J. Differ. Equ. Appl. 17, 327–347 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, J.: Modeling of mosquitoes with dominant or recessive transgenes and Allee effects. Math. Biosci. Eng. 7, 101–123 (2010)

    MathSciNet  MATH  Google Scholar 

  24. Li, J.: Simple discrete-time malarial models. J. Differ. Equ. Appl. 19, 649–666 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, J.: New revised simple models for interactive wild and sterile mosquito populations and their dynamics. J. Biol. Dyn. (2016). https://doi.org/10.1080/17513758.2016.1216613

    Google Scholar 

  26. Li, J., Yuan, Z.: Modeling releases of sterile mosquitoes with different strategies. J. Biol. Dyn. 9, 1–14 (2015)

    Article  MathSciNet  Google Scholar 

  27. May, R.M.: Theoretical Ecology: Principles and Applications. Saunders, Philadelphia (1976)

    Google Scholar 

  28. May, R.M., Conway, G.R., Hassell, M.P., Southwood, T.R.E.: Time delays, density-dependence and single-species oscillations. J. Anim. Ecol. 43, 747–770 (1974)

    Article  Google Scholar 

  29. May, R.M., Oster, G.F.: Bifurcations and dynamic complexity in simple ecological models. Am. Nat. 110, 573–599 (1976)

    Article  Google Scholar 

  30. Otero, M., Solari, H.G., Schweigmann, N.: A stochastic population dynamics model for Aedes aegypti: formulation and application to a city with temperate climate. Bull. Math. Biol. 68, 1945–1974 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Schreiber, S.J.: Allee effects, extinctions, and chaotic transients in simple population models. Theor. Popul. Biol. 64, 201–209 (2003)

    Article  MATH  Google Scholar 

  32. Thome, R.C.A., Yang, H.M., Esteva, L.: Optimal control of Aedes aegypti mosquitoes by the sterile insect technique and insecticide. Math. Biosci. 223, 12–23 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wikipedia, Sterile insect technique (2013) http://en.wikipedia.org/wiki/Sterile$_$insect$_$technique

Download references

Acknowledgements

The authors thank Dr. Nakul Chitnis and an anonymous reviewer for their careful reading and valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Li.

Additional information

This article belongs to the Special Issue: Demographic and temporal heterogeneity in infectious disease epidemiology.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Li, J. Discrete-time models for releases of sterile mosquitoes with Beverton–Holt-type of survivability. Ricerche mat 67, 141–162 (2018). https://doi.org/10.1007/s11587-018-0361-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11587-018-0361-4

Keywords

Mathematics Subject Classification

Navigation