Skip to main content
Log in

Thermal convection in an inclined porous layer with Brinkman law

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

A model for thermal convection of a fluid saturating an inclined layer of porous medium with a Brinkman law and stress-free boundary conditions is studied. When the Darcy number \(\tilde{D}a\) is zero, this problem has been studied by Rees and Bassom (Acta Mech 144(1–2):103–118, 2000). When the Brinkman term is present in the model (\(\tilde{D}a\not =0\)) the basic motion is a combination of hyperbolic and polynomial functions. With the Chebyshev collocation method we study the linear instability of the basic motion for three-dimensional perturbations. We also give nonlinear stability conditions and, for longitudinal perturbations, we prove the coincidence of linear and nonlinear critical Rayleigh numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chen, M., Pearlstein, A.J.: Stability of free-convection flows of variable-viscosity fluids in vertical and inclined slots. J. Fluid Mech. 198, 513–541 (1989)

    Article  Google Scholar 

  2. Falsaperla, P., Giacobbe, A., Lombardo, S., Mulone, G.: Stability of hydromagnetic laminar flows in an inclined heated layer. Ric. Mat. 66, 125–140 (2017). https://doi.org/10.1007/s11587-016-0290-z

    Article  MathSciNet  MATH  Google Scholar 

  3. Bories, S.A., Combarnous, M.A.: Natural convection in a sloping porous layer. J. Fluid Mech. 57, 63–79 (1973)

    Article  Google Scholar 

  4. Weber, J.E.: Thermal convection in a tilted porous layer. Int. J. Heat Mass Transf. 18, 474–475 (1975)

    Article  Google Scholar 

  5. Rees, D.A.S., Bassom, A.P.: The onset of Darcy–Bénard convection in an inclined layer heated from below. Acta Mech. 144(1–2), 103–118 (2000)

    Article  Google Scholar 

  6. Barletta, A.: A proof that convection in a porous vertical slab may be unstable. J. Fluid Mech. 770, 273–288 (2015)

    Article  MathSciNet  Google Scholar 

  7. Barletta, A., Rees, D.A.S.: Linear instability of the Darcy–Hadley flow in an inclined porous layer. Phys. Fluids 24, 074104 (2012)

    Article  Google Scholar 

  8. Barletta, A., Celli, M.: Instability of combined forced and free flow in an inclined porous channel. Int. J. Comput. Methods 13, 1640001 (2016)

    Article  MathSciNet  Google Scholar 

  9. Barletta, A., Storesletten, L.: Adiabatic eigenflows in a vertical porous channel. J. Fluid Mech. 749, 778–793 (2014)

    Article  MathSciNet  Google Scholar 

  10. Barletta, A., Rees, D.A.S.: Local thermal non-equilibrium analysis of the thermoconvective instability in an inclined porous layer. Int. J. Heat Mass Transf. 83, 327–336 (2015)

    Article  Google Scholar 

  11. Rees, D.A.S., Postelnicu, A., Storesletten, L.: The onset of Darcy–Forchheimer convection in inclined porous layers heated from below. Transp. Porous Media 64–1, 15–23 (2006)

    Article  MathSciNet  Google Scholar 

  12. Nield, D.A., Kuznetsov, A.V.: The onset of convection in a bidisperse porous medium. Int. J. Heat Mass Transf. 49, 3068–3074 (2006)

    Article  Google Scholar 

  13. Falsaperla, P., Mulone, G., Straughan, B.: Bidispersive-inclined convection. R. Soc. Proc. Math. Phys. Eng. Sci. 472, 20160480 (2016)

    Article  MathSciNet  Google Scholar 

  14. Nield, D.A., Bejan, A.: Convection in Porous Media, 5th edn. Springer, New York (2017)

    Book  Google Scholar 

  15. Straughan B.: Stability and Wave Motion in Porous Media. Applied Mathematical Sciences, vol. 165. Springer, New-York (2008). ISBN-13: 978-0387765419

  16. Rionero, S., Straughan, B.: Convection in a porous medium with internal heat source and variable gravity effects. Int. J. Eng. Sci. 28, 497–503 (1990)

    Article  MathSciNet  Google Scholar 

  17. Rionero, S.: Long-time behaviour of multi-component fluid mixtures in porous media. Int. J. Eng. Sci. 48, 1519–1533 (2010)

    Article  MathSciNet  Google Scholar 

  18. Lombardo, S., Mulone, G.: Non-linear stability and convection for laminar flows in a porous medium with Brinkman law. Math. Methods Appl. Sci. 26, 453462 (2003). https://doi.org/10.1002/mma.333

    Article  MathSciNet  MATH  Google Scholar 

  19. Capone, F., Rionero, S.: Nonlinear stability of a convective motion in a porous layer driven by a horizontally periodic temperature gradient. Contin. Mech. Thermodyn. 15, 529–538 (2003)

    Article  MathSciNet  Google Scholar 

  20. Flavin, J.N., Rionero, S.: Nonlinear stability for a thermofluid in a vertical porous slab. Contin. Mech. Thermodyn. 11, 173–179 (1999)

    Article  MathSciNet  Google Scholar 

  21. Rionero, S., Vergori, L.: Long-time behaviour of fluid motions in porous media according to the Brinkman model. Acta Mech. 210, 221–240 (2010)

    Article  Google Scholar 

  22. Rionero, S.: Onset of convection in porous materials with vertically stratified porosity. Acta Mech. 222, 261–272 (2011)

    Article  Google Scholar 

  23. Rionero, S.: Instability in porous layers with depth-dependent viscosity and permeability. Acta Appl. Math. 132, 493–504 (2014)

    Article  MathSciNet  Google Scholar 

  24. Hill, A.A., Rionero, S., Straughan, B.: Global stability for penetrative convection with throughflow in a porous material. IMA J. Appl. Math. 72, 635–643 (2007)

    Article  MathSciNet  Google Scholar 

  25. Franchi, F., Straughan, B.: Structural stability for the Brinkman equations of porous media. Math. Methods Appl. Sci. 19, 1335–1347 (1996)

    Article  MathSciNet  Google Scholar 

  26. Payne, L.E., Straughan, B.: A naturally efficient numerical technique for porous convection stability with non-trivial boundary conditions. Int. J. Numer. Anal. Methods Geomech. 24, 815–836 (2000)

    Article  Google Scholar 

  27. Lombardo, S., Mulone, G., Straughan, B.: Non-linear stability in the Bnard problem for a double-diffusive mixture in a porous medium. Math. Methods Appl. Sci 24, 1229–1246 (2001)

    Article  MathSciNet  Google Scholar 

  28. Straughan, B., Walker, D.W.: Two very accurate and efficient methods for computing eigenvalues and eigenfunctions in porous convection problems. J. Comput. Phys. 127, 128–141 (1996)

    Article  MathSciNet  Google Scholar 

  29. Falsaperla, P., Mulone, G., Straughan, B.: Rotating porous convection with prescribed heat flux. Int. J. Eng. Sci. 48, 685–692 (2010)

    Article  MathSciNet  Google Scholar 

  30. Ciarletta, M., Straughan, B., Tibullo, V.: Modelling boundary and nonlinear effects in porous media flow. Nonlinear Anal. Real World Appl. 12, 2839–2843 (2011)

    Article  MathSciNet  Google Scholar 

  31. Falsaperla, P., Mulone, G., Straughan, B.: Inertia effects on rotating porous convection. Int. J. Heat Mass Transf. 54, 1352–1359 (2011)

    Article  Google Scholar 

  32. Haddad, S.A.M., Straughan, B.: Porous convection and thermal oscillations. Ric. Mat. 61, 307–320 (2012)

    Article  MathSciNet  Google Scholar 

  33. Capone, F., Rionero, S.: Brinkman viscosity action in porous MHD convection. Int. J. Nonlinear Mech. 85, 109–117 (2016)

    Article  Google Scholar 

  34. Capone, F., Rionero, S.: Porous MHD convection: stabilizing effect of magnetic field and bifurcation analysis. Ric. Mat. 56, 163–186 (2016)

    Article  MathSciNet  Google Scholar 

  35. Rionero, S.: Influence of depth-dependent Brinkman viscosity on the onset of convection in ternary porous layer. Transp. Porous Media 106(1), 221–236 (2015)

    Article  MathSciNet  Google Scholar 

  36. Gentile, M., Straughan, B.: Bidispersive thermal convection. Int. J. Heat Mass Transf. 114, 837–840 (2017)

    Article  Google Scholar 

  37. Rees, D.A.S.: The onset of Darcy–Brinkman convection in a porous layer: an asymptotic analysis. Int. J. Heath Mass Transf. 45, 2213–2220 (2002)

    Article  Google Scholar 

  38. Vasseur, P., Wang, C.H., Sen, M.: Natural convection in an inclined rectangular porous slot: the Brinkman-extended Darcy model. J. Heat Transf. 112, 507–5011 (1990)

    Article  Google Scholar 

  39. Montrasio, L., Valentino, R., Losi, G.L.: Rainfall infiltration in a shallow soil: a numerical simulation of the double-porosity effect. Electron. J. Geotech. Eng. 16, 1387–1403 (2011)

    Google Scholar 

  40. Sanavia, L., Schrefler, B.A.: Finite element analysis of the initiation of landslides with a non-isothermal multiphase model. In: Frmond, M., Maceri, F. (eds.) Mechanics, Models and Methods in Civil Engineering. Lecture notes in applied and computational mechanics, vol. 61, pp. 123–146. Springer, Berlin (2012)

    Chapter  Google Scholar 

  41. Hammond, N.P., Barr, A.C.: Global resurfacing of Uranus’s moon Miranda by convection. Geology (2014). https://doi.org/10.1130/G36124.1

    Article  Google Scholar 

  42. Galdi, G.P., Straughan, B.: Exchange of stabilities, symmetry and nonlinear stability. Arch. Ration. Mech. Anal. 89, 211–228 (1985)

    Article  MathSciNet  Google Scholar 

  43. Mulone, G., Straughan, B.: An operative method to obtain necessary and sufficient stability conditions for double diffusive convection in porous media. ZAMM Z. Angew. Math. Mech. 86, 507–520 (2006)

    Article  MathSciNet  Google Scholar 

  44. Lombardo, S., Mulone, G., Trovato, M.: Nonlinear stability in reaction-diffusion systems via optimal Lyapunov functions. J. Math. Anal. Appl. 342, 461–476 (2008). https://doi.org/10.1016/j.jmaa.2007.12.024

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Research partially supported by the University of Catania under the contract “Analisi qualitativa per sistemi dinamici finito e infinito dimensionali con applicazioni a biomatematica, meccanica dei continui e termodinamica estesa classica e quantistica” and by “Gruppo Nazionale della Fisica Matematica” of the “Istituto Nazionale di Alta Matematica”. We thank Brian Straughan for helpful discussions on this subject. The authors acknowledge support from the project PON SCN 00451 CLARA - CLoud plAtform and smart underground imaging for natural Risk Assessment, Smart Cities and Communities and Social Innovation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Falsaperla.

Additional information

This paper is dedicated to Prof. Tommaso Ruggeri in the occasion of his 70th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Falsaperla, P., Mulone, G. Thermal convection in an inclined porous layer with Brinkman law. Ricerche mat 67, 983–999 (2018). https://doi.org/10.1007/s11587-018-0371-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11587-018-0371-2

Keywords

Mathematics Subject Classification

Navigation