Skip to main content
Log in

Strain-mediated propagation of magnetic domain-walls in cubic magnetostrictive materials

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

The role played by magnetoelastic effects on the properties exhibited by magnetic domain walls propagating along the major axis of a thin magnetostrictive nanostrip, coupled mechanically with a thick piezoelectric actuator, is theoretically investigated. The magnetostrictive layer is assumed to be a linear elastic material belonging to the cubic crystal classes \(\bar{4}\)3m, 432 and m\(\bar{3}\)m and to undergo isochoric magnetostrictive deformations. The analysis is carried out in the framework of the extended Landau–Lifshitz–Gilbert equation, which allows to describe, at the mesoscale, the spatio-temporal evolution of the local magnetization vector driven by magnetic fields and electric currents, in the presence of magnetoelastic and magnetocrystalline anisotropy fields. Through the traveling-wave transformation, the explicit expression of the key features involved in both steady and precessional regimes is provided and a qualitative comparison with data from the literature is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Eerenstein, W., et al.: Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006)

    Article  Google Scholar 

  2. Vaz, C.A.F., et al.: Magnetoelectric coupling effects in multiferroic complex oxide. Adv. Mater. 22, 2900–2918 (2010)

    Article  Google Scholar 

  3. Balinskiy, M., et al.: Magnetoelectric spin wave modulator based on synthetic multiferroic structure. Sci. Rep. 8, 10867 (2018)

    Article  Google Scholar 

  4. Lei, N., et al.: Strain-controlled magnetic domain wall propagation in hybrid piezoelectric/ferromagnetic structures. Nat. Commun. 4, 1378 (2013)

    Article  Google Scholar 

  5. De Ranieri, E., et al.: Piezoelectric control of the mobility of a domain wall driven by adiabatic and non-adiabatic torques. Nat. Mater. 12, 808–814 (2013)

    Article  Google Scholar 

  6. Shepley, P.M., et al.: Modification of perpendicular magnetic anisotropy and domain wall velocity in Pt/Co/Pt by voltage-induced strain. Sci. Rep. 5, 7921 (2015)

    Article  Google Scholar 

  7. Hu, J.M., et al.: Fast magnetic domain-wall motion in a ring-shaped nanowire driven by a voltage. Nano Lett. 16, 2341–2348 (2016)

    Article  Google Scholar 

  8. Hubert, A., Schäfer, R.: Magnetic Domains:The Analysis of Magnetic Microstructures. Springer, Berlin (2008)

    Google Scholar 

  9. Chikazumi, S., Graham, C.D.: Physics of Ferromagnetism. Oxford University Press, Oxford (2009)

    Google Scholar 

  10. Cullity, B.D., Graham, C.D.: Introduction to Magnetic Materials. Wiley, New York (2009)

    Google Scholar 

  11. Landau, L.D., Lifshitz, E.M.: On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Phys. Z. Sowjetunion 8, 153–169 (1935)

    MATH  Google Scholar 

  12. Gilbert, T.L.: A Lagrangian formulation of the gyromagnetic equation of the magnetization field. Phys. Rev. 100, 1243 (1955)

    Google Scholar 

  13. Berger, L.: Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996)

    Article  Google Scholar 

  14. Zhang, S., Li, Z.: Roles of nonequilibrium conduction electrons on the magnetization dynamics of ferromagnets. Phys. Rev. Lett. 93, 127204 (2004)

    Article  Google Scholar 

  15. Thiaville, A., et al.: Micromagnetic understanding of current-driven domain wall motion in patterned nanowires. Europhys. Lett. 69, 990–996 (2005)

    Article  Google Scholar 

  16. Tiberkevich, V., Slavin, A.: Nonlinear phenomenological model of magnetic dissipation for large precession angles: generalization of the Gilbert model. Phys. Rev. B 75, 014440 (2007)

    Article  Google Scholar 

  17. Consolo, G.: Onset of linear instability driven by electric currents in magnetic systems: a Lagrangian approach. Ric. Mat. 65, 413–422 (2016)

    Article  MathSciNet  Google Scholar 

  18. Consolo, G.: Modeling magnetic domain-wall evolution in trilayers with structural inversion asymmetry. Ric. Mat. 67, 1001–1015 (2018)

    Article  MathSciNet  Google Scholar 

  19. Schryer, N.L., Walker, L.R.: The motion of 180\(\deg \) domain walls in uniform dc magnetic fields. J. Appl. Phys. 45, 5406–5421 (1974)

    Article  Google Scholar 

  20. Consolo, G., Currò, C., Martinez, E., Valenti, G.: Mathematical modeling and numerical simulation of domain wall motion in magnetic nanostrips with crystallographic defects. Appl. Math. Model. 36, 4876–4886 (2012)

    Article  MathSciNet  Google Scholar 

  21. Consolo, G., Valenti, G.: Traveling wave solutions of the one-dimensional extended Landau–Lifshitz–Gilbert equation with nonlinear dry and viscous dissipations. Acta Appl. Math. 122, 141–152 (2012)

    MathSciNet  MATH  Google Scholar 

  22. Consolo, G., Valenti, G.: Analytical solution of the strain-controlled magnetic domain wall motion in bilayer piezoelectric/magnetostrictive nanostructures. J. Appl. Phys. 121, 043903 (2017)

    Article  Google Scholar 

  23. Shu, Y.C., Lin, M.P., Wu, K.C.: Micromagnetic modeling of magnetostrictive materials under intrinsic stress. Mech. Mater. 36, 975–997 (2004)

    Article  Google Scholar 

  24. Baňas, L.: A numerical method for the Landau–Lifshitz equation with magnetostriction. Math. Methods Appl. Sci. 28, 1939–1954 (2005)

    Article  MathSciNet  Google Scholar 

  25. Liang, C.Y., et al.: Modeling of magnetoelastic nanostructures with a fully coupled mechanical-micromagnetic model. Nanotechnology 25, 435701 (2014)

    Article  Google Scholar 

  26. Consolo, G., Curro, C., Valenti, G.: Curved domain walls dynamics driven by magnetic field and electric current in hard ferromagnets. Appl. Math. Model. 38, 1001–1010 (2014)

    Article  MathSciNet  Google Scholar 

  27. Consolo, G., Federico, S., Valenti, G.: Magnetostriction in transversely isotropic hexagonal crystals. Phys. Rev. B 101, 014405 (2020)

  28. Federico, S., Consolo, G., Valenti, G.: Tensor representation of magnetostriction for all crystal classes. Math. Mech. Solids 24, 2814–2843 (2019)

    Article  MathSciNet  Google Scholar 

  29. Zhang, J.X., Chen, L.Q.: Phase-field microelasticity theory and micromagnetic simulations of domain structures in giant magnetostrictive materials. Acta Mater. 53, 2845–2855 (2005)

    Article  Google Scholar 

  30. Mballa-Mballa, F.S., et al.: Micromagnetic modeling of magneto-mechanical behavior. IEEE Trans. Magn. 50, 1–4 (2014)

    Article  Google Scholar 

  31. Baltensperger, W., Helman, J.S.: A model that gives rise to effective dry friction in micromagnetics. J. Appl. Phys. 73, 6516–6518 (1993)

    Article  Google Scholar 

  32. Metaxas, P.J., et al.: Creep and flow regimes of magnetic domain-wall motion in ultrathin Pt/Co/Pt films with perpendicular anisotropy. Phys. Rev. Lett. 99, 217208 (2007)

    Article  Google Scholar 

  33. Clark, A.E., et al.: Extraordinary magnetoelasticity and lattice softening in bcc Fe–Ga alloys. J. Appl. Phys. 93, 8621–8623 (2003)

    Article  Google Scholar 

  34. Wuttig, M., Dai, L., Cullen, J.R.: Elasticity and magnetoelasticity of Fe–Ga solid solutions. Appl. Phys. Lett. 80, 1135–1137 (2002)

    Article  Google Scholar 

  35. Rafique, S., et al.: Magnetic anisotropy of FeGa alloys. J. Appl. Phys. 95, 6939–6941 (2004)

    Article  Google Scholar 

  36. Gopman, D.B., et al.: Static and dynamic magnetic properties of sputtered Fe–Ga thin films. IEEE Trans. Magn. 53, 1–4 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The results contained in the present paper have been partially presented in WASCOM 2019. This manuscript is dedicated to Prof. G. Toscani and Prof. M. Sugiyama on the occasion of their 70 years. This work has been supported by INdAM-GNFM [GC, GV], MIUR (Italian Ministry of Education, University and Research) through Project PRIN2017 No. 2017YBKNCE, “Multiscale phenomena in Continuum Mechanics: singular limits, off-equilibrium and transitions” [GC, GV], and NSERC (Natural Sciences and Engineering Research Council of Canada) trough the NSERC Discovery Grant No. RGPIN-2015-06027 [SF].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Consolo.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Consolo, G., Federico, S. & Valenti, G. Strain-mediated propagation of magnetic domain-walls in cubic magnetostrictive materials. Ricerche mat 70, 81–97 (2021). https://doi.org/10.1007/s11587-020-00484-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11587-020-00484-x

Keywords

Mathematics Subject Classification

Navigation