Skip to main content
Log in

A novel version of the Von Foerster equation to describe poikilothermic organisms including physiological age and reproduction rate

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

The mathematical description of poikilothermic organisms’ life cycle, of insects in particular, is a widely discussed argument, above all for its application in decision support systems. The increasing interest among agricultural industries in obtaining products with minor quantities of chemical inputs has led entomologists and model scientists to study in greater depth not only the biology and behaviour of the insects, but also the way to translate these mechanisms into mathematical language. The aim of this work is to provide a new instrument to describe insect pests’ population density. In particular, the study analyses insects’ development through the life stages driven by environmental factors. This has led researchers to consider physiological age, instead of the more widely used chronological age. In addition to mortality and fertility rates, the possibility of improving the simulation by inserting as a boundary condition results from previous field monitoring or the links with diapause models has been considered. The work is validated in the case of the European grapevine moth Lobesia botrana.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ageno, M.: Le radici della Biologia. Feltrinelli Editore, Milan (1986)

    Google Scholar 

  2. Allen, J.C., Byrd, J.H.: Computer modeling of insect growth and its application to forensic entomology (2000). https://www.ncjrs.gov/pdffiles1/nij/grants/181992.pdf. Accessed 6 Feb 2018

  3. Baumgärtner, J., Gutierrez, A.P., Pesolillo, S., Severini, M.: A model for the overwintering process of European grapevine moth Lobesia botrana (Denis & Schiffermüller) (Lepidoptera, Tortricidae) populations. J. Entomol. Acarol. Res. 44(1), 2 (2012). https://doi.org/10.4081/jear.2012.e2

    Article  Google Scholar 

  4. Briére, J.F., Pracros, P.: Comparison of temperature-dependent growth models with the development of Lobesia botrana (Lepidoptera: Tortricidae). Environ. Entomol. 27(1), 94–101 (1998). https://doi.org/10.1093/ee/27.1.94

    Article  Google Scholar 

  5. Briére, J.F., Pracros, P., Le Roux, A.Y., Pierre, J.S.: A novel rate model of temperature-dependent development for arthropods. Environ. Entomol. 28(1), 22–29 (1999). https://doi.org/10.1093/ee/28.1.22

    Article  Google Scholar 

  6. Brunori, E., Farina, R., Biasi, R.: Sustainable viticulture: the carbon-sink function of the vineyard agro-ecosystem. Agric. Ecosyst. Environ. 223, 10–21 (2016). https://doi.org/10.1016/j.agee.2016.02.012

    Article  Google Scholar 

  7. Castex, V., Beniston, M., Calanca, P., Fleury, D., Moreau, J.: Pest management under climate change: the importance of understanding tritrophic relations. Sci. Total Environ. 616–617, 397–407 (2018). https://doi.org/10.1016/j.scitotenv.2017.11.027

    Article  Google Scholar 

  8. Chou, T., Greenman, C.D.: A hierarchical kinetic theory of birth, death and fission in age-structured interacting populations. J. Stat. Phys. 164, 49–76 (2016). https://doi.org/10.1007/s10955-016-1524-x

    Article  MathSciNet  MATH  Google Scholar 

  9. Cocco, A., Deliperi, S., Lentini, A., Mannu, R., Delrio, G.: Seasonal phenology of Tuta absoluta (Lepidoptera: Gelechiidae) in protected and open-field crops under Mediterranean climatic conditions. Phytoparasitica 43(5), 713–724 (2015). https://doi.org/10.1007/s12600-015-0486-x

    Article  Google Scholar 

  10. Damos, P., Savopoulou-Soultani, M.: Temperature-driven models for insect development and vital thermal requirements. Psyche (2012). https://doi.org/10.1155/2012/123405

    Article  Google Scholar 

  11. Delbac, L., Thiéry, D.: Lobesia botrana (Lepidoptera: Tortricidae) larval population assessment by damage to grape flowers: could empty larval nests monitoring be useful? IOBC-WPRS Bull. 128, 37–44 (2017)

    Google Scholar 

  12. Diekmann, O., Lauwerier, H.A., Aldenberg, T., Metz, J.A.J.: Growth, fission and the stable size distribution. J. Math. Biol. 18(2), 135–148 (1983). https://doi.org/10.1007/BF00280662

    Article  MATH  Google Scholar 

  13. Feldman, R.M., Curry, G.L.: A PDE formulation and numerical solution for a boll weevil–cotton crop model. Comput. Math. Appl. 9(3), 393–402 (1983). https://doi.org/10.1016/0898-1221(83)90054-8

    Article  MathSciNet  MATH  Google Scholar 

  14. Fraga, H., Santos, J.A., Moutinho-Pereira, J., Carlos, C., Silvestre, J., Eiras-Dias, J., Mota, T., Malheiro, A.C.: Statistical modelling of grapevine phenology in Portuguese wine regions: observed trends and climate change projections. J. Agric. Sci. 154(5), 795–811 (2016). https://doi.org/10.1017/S0021859615000933

    Article  Google Scholar 

  15. Gillanders, S.W., Saunders, D.S.: A coupled pacemaker-slave model for the insect photoperiodic clock: interpretation of ovarian diapause data in Drosophila melanogaster. Biol. Cybern. 49, 149–154 (1984). https://doi.org/10.1371/journal.pone.0046143

    Article  Google Scholar 

  16. Ikemoto, T., Kiritani, K.: Novel method of specifying low and high threshold temperatures using thermodynamic SSI model of insect development. Environ. Entomol. 48(3), 479–488 (2019). https://doi.org/10.1093/ee/nvz031

    Article  Google Scholar 

  17. Iltis, C., Martel, G., Thiéry, D., Moreau, J., Louâpre, P.: When warmer means weaker: high temperatures reduce behavioural and immune defences of the larvae of a major grapevine pest. J. Pest Sci. 91(4), 1315–1326 (2018). https://doi.org/10.1007/s10340-018-0992-y

    Article  Google Scholar 

  18. Logan, J.A., Wollkind, D.J., Hoyt, S.C., Tanigoshi, L.K.: An analytic model for description of temperature dependent rate phenomena in arthropods. Environ. Entomol. 5(6), 1133–1140 (1976). https://doi.org/10.1093/ee/5.6.1133

    Article  Google Scholar 

  19. Lucchi, A., Scaramozzino, P.L., Michl, G., Loni, A., Hoffmann, C.: The first record in italy of Trichogramma cordubense Vargas & Cabello 1985 (Hymenoptera Trichogrammatidae) emerging from the eggs of Lobesia botrana (Denis & Schiffermüller, 1775) (Lepidoptera Tortricidae). VITIS-J. Grapevine Res. 55(4), 161–164 (2016). https://doi.org/10.5073/vitis.2016.55.161-164

    Article  Google Scholar 

  20. McKendrick, A.G.: Applications of mathematics to medical problems. Edimburgh Math. Soc. (1926). https://doi.org/10.1017/S0013091500034428

    Article  Google Scholar 

  21. Meisner, M.H., Harmon, J.P., Ives, A.R.: Temperature effects on long-term population dynamics in a parasitoid-host system. Ecol. Monogr. 84(3), 457–476 (2014). https://doi.org/10.1890/13-1933.1

    Article  Google Scholar 

  22. Mirhosseini, M.A., Fathipour, Y., Reddy, G.V.P.: Arthropod development’s response to temperature: a review and new software for modeling. Ann. Entomol. Soc. Am. 110(6), 507–520 (2017). https://doi.org/10.1093/aesa/sax071

    Article  Google Scholar 

  23. Moshtaghi Maleki, F., Iranipour, S., Hejazi, M.J., Saber, M.: Temperature-dependent age-specific demography of grapevine moth (Lobesia botrana) (Lepidoptera: Tortricidae): jackknife vs. bootstrap techniques. Arch. Phytopathol. Plant Prot. 49(11–12), 263–280 (2016). https://doi.org/10.1080/03235408.2016.1140566

    Article  Google Scholar 

  24. Nemani, R.R., White, M.A., Cayan, D.R., Jones, G.V., Running, S.W., Coughlan, J.C., Peterson, D.L.: Asymmetric warming over coastal California and its impact on the premium wine industry. Clim. Res. 19(1), 25–34 (2001). https://doi.org/10.3354/cr019025

    Article  Google Scholar 

  25. Pavan, F., Floreani, C., Barro, P., Zandigiacomo, P., Dalla Montà, L.: Occurrence of two different development patterns in Lobesia botrana (Lepidoptera: Tortricidae) larvae during the second generation. Agric. For. Entomol. 15(4), 398–406 (2013). https://doi.org/10.1111/afe.12027

    Article  Google Scholar 

  26. Pennington, T., Reiff, J.M., Theiss, K., Entling, M.H., Hoffmann, C.: Reduced fungicide applications improve insect pest control in grapevine. BioControl 63(5), 687–695 (2018). https://doi.org/10.1007/s10526-018-9896-2

    Article  Google Scholar 

  27. Preto, C.R., Bellamy, D.E., Walse, S.S., Zalom, F.G.: Predicting larval stage distribution of Lobesia botrana (Lepidoptera: Tortricidae) at three constant temperatures. J. Econ. Entomol. 112(2), 585–590 (2019). https://doi.org/10.1093/jee/toy374

    Article  Google Scholar 

  28. Rojano, F., Ibarra-Juárez, L.A., Lira-Noriega, A., Escobar-Sarria, F., González-Tokman, D.: Application of a modified McKendrick-Von Foerster equation to predict beetle population dynamics (Xyleborus affinis) under artificial medium in growth chambers. In: AgEng Conference, 1–8 July (2018)

  29. Rossini, L., Contarini, M., Severini, M., Talano, D., Speranza, S.: A modelling approach to describe the Anthonomus eugenii (Coleoptera: Curculionidae) life cycle in plant protection: a priori and a posteriori analysis. Fla. Entomol. (2020) (in press)

  30. Rossini, L., Severini, M., Contarini, M., Speranza, S.: A novel modelling approach to describe an insect life cycle vis-à-vis plant protection: description and application in the case study of Tuta absoluta. Ecol. Model. 409(July), 108778 (2019). https://doi.org/10.1016/j.ecolmodel.2019.108778

    Article  Google Scholar 

  31. Rossini, L., Severini, M., Contarini, M., Speranza, S.: Use of ROOT to build a software optimized for parameter estimation and simulations with Distributed Delay Model. Ecol. Inform. 50(January), 184–190 (2019). https://doi.org/10.1016/j.ecoinf.2019.02.002

    Article  Google Scholar 

  32. Rossini, L., Severini, M., Contarini, M., Speranza, S.: EntoSim, a ROOT-based simulator to forecast insects’ life cycle: description and application in the case of Lobesia botrana. Crop Prot. 129, 105024 (2020). https://doi.org/10.1016/j.cropro.2019.105024

    Article  Google Scholar 

  33. Rupnik, R., Kukar, M., Vračar, P., Košir, D., Pevec, D., Bosnić, Z.: AgroDSS: a decision support system for agriculture and farming. Comput. Electron. Agric. 161(November 2017), 260–271 (2019). https://doi.org/10.1016/j.compag.2018.04.001

    Article  Google Scholar 

  34. Saunders, D.S.: Insect photoperiodism: effects of temperature on the induction of insect diapause and diverse roles for the circadian system in the photoperiodic response. Entomol. Sci. 17(1), 25–40 (2014). https://doi.org/10.1111/ens.12059

    Article  Google Scholar 

  35. Schoolfield, R.M., Sharpe, P.J., Magnuson, C.E.: Non-linear regression of biological temperature-dependent rate models based on absolute reaction-rate theory. J. Theor. Biol. 88(4), 719–31 (1981). https://doi.org/10.1016/0022-5193(81)90246-0

    Article  Google Scholar 

  36. Speranza, S., Colonnelli, E., Garonna, A.P., Laudonia, S.: First record of Anthonomus eugenii (Coleoptera: Curculionidae) in Italy. Fla. Entomol. 97(2), 844–845 (2014). https://doi.org/10.1653/024.097.0275

    Article  Google Scholar 

  37. Speranza, S., Sannino, L.: The current status of Tuta absoluta in Italy. EPPO Bull. 42(2), 328–332 (2012). https://doi.org/10.1111/epp.2579

    Article  Google Scholar 

  38. Tauber, E., Kyriacou, B.P.: Insect photoperiodism and circadian clocks: models and mechanisms. J. Biol. Rhythm. 16(4), 381–390 (2001). https://doi.org/10.1177/074873001129002088

    Article  Google Scholar 

  39. Thiéry, D., Monceau, K., Moreau, J.: Larval intraspecific competition for food in the European grapevine moth Lobesia botrana. Bull. Entomol. Res. 104(4), 517–524 (2014). https://doi.org/10.1017/S0007485314000273

    Article  Google Scholar 

  40. Tonnang, H.E.Z., Mohamed, S.F., Khamis, F., Ekesi, S.: Identification and risk assessment for worldwide invasion and spread of Tuta absoluta with a focus on Sub-Saharan Africa: implications for phytosanitary measures and management. PloS One 10(8), 1–19 (2015). https://doi.org/10.1371/journal.pone.0135283

    Article  Google Scholar 

  41. Trucco, E.: Mathematical models for cellular systems: the Von Foerster equation. Part I. Bull. Math. Biophys. 27(3), 449–471 (1965). https://doi.org/10.1007/BF02476849

    Article  Google Scholar 

  42. Trucco, E.: Mathematical models for cellular systems: the Von Foerster equation. Part II. Bull. Math. Biophys. 27, 449–471 (1965)

    Article  Google Scholar 

  43. Varela, L.G., Smith, R.J., Cooper, M.L., Hoenisch, R.W.: European grapevine moth, Lobesia botrana, in Napa Valley vineyards. Practical Winery & Vineyard, 1–5 March/April (2010)

  44. Vassiliou, V.A.: Effectiveness of insecticides in controlling the first and second generations of the Lobesia botrana (Lepidoptera: Tortricidae) in table grapes. J. Econ. Entomol. 104(2), 580–585 (2011). https://doi.org/10.1603/EC10343

    Article  Google Scholar 

  45. Verpy, A., Gil, F., Mary, S., Delbac, L., Thiéry, D.: Temporal differences in Lobesia botrana’s lifecycle at local scale, the example of the Saint Emilion vineyard. IOBC-WPRS Bull. 105, 197–204 (2014)

    Google Scholar 

  46. Von Foerster, H.: Some remarks on changing populations. In: Stohlman Jr., F. (ed.) The Kinetics of Cellular Proliferation, pp. 382–407. Grune and Stratton, New York (1959)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous reviewers for their comments and suggestions, which have been greatly helpful for the improvement of this manuscript. The research was carried out in the framework of the MIUR (Ministry for Education, University and Research) initiative “Department of Excellence” (Law 232/2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Rossini.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rossini, L., Contarini, M. & Speranza, S. A novel version of the Von Foerster equation to describe poikilothermic organisms including physiological age and reproduction rate. Ricerche mat 70, 489–503 (2021). https://doi.org/10.1007/s11587-020-00489-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11587-020-00489-6

Keywords

Mathematics Subject Classification

Navigation