Skip to main content
Log in

On the shock thickness for a binary gas mixture

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

We discuss the structure of the shock wave solution for a system of Navier–Stokes equations, obtained as hydrodynamic limit of a BGK description of the dynamics of monoatomic gases at kinetic level. We investigate first the thickness of the transition region of the shock profile for a monoatomic gas, for varying Mach number and different physical options for the viscosity coefficient. The analysis is then extended to a binary gas mixture. Some numerical results for noble gases are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Boillat, G., Ruggeri, T.: On the shock structure problem for hyperbolic system of balance laws and convex entropy. Contin. Mech. Thermodyn. 10(5), 285–292 (1988)

    Article  MathSciNet  Google Scholar 

  2. Simic, S.: Shock structure in continuum models of gas dynamics: stability and bifurcation analysis. Nonlinearity 22(6), 1337 (2009)

    Article  MathSciNet  Google Scholar 

  3. Ruggeri, T., Taniguchi, S.: Shock waves in hyperbolic systems of nonequilibrium thermodynamics. In: Berezovski, A., Soomere, T. (eds.) Applied Wave Mathematics II, pp. 167–186. Springer, Cham (2019)

    Chapter  Google Scholar 

  4. Ruggeri, T.: Non existence of shock structure solutions for hyperbolic dissipative systems including characteristic shocks. Appl. Anal. 57(1–2), 23–33 (1995)

    Article  MathSciNet  Google Scholar 

  5. Weiss, W.: Continuous shock structure in extended thermodynamics. Phys. Rev. E 52(6), R5760 (1995)

    Article  Google Scholar 

  6. Taniguchi, S., Ruggeri, T.: On the sub-shock formation in extended thermodynamics. Int. J. Non-Linear Mech. 99, 69–78 (2018)

    Article  Google Scholar 

  7. Currò, C., Fusco, D.: Discontinuous travelling wave solutions for a class of dissipative hyperbolic models. Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti Lincei, Matematica e Applicazioni 16(1), 61–71 (2005)

    MathSciNet  MATH  Google Scholar 

  8. Bisi, M., Martalò, G., Spiga, G.: Shock wave structure of multi-temperature Euler equations from kinetic theory for a binary mixture. Acta Appl. Math. 132(1), 95–105 (2014)

    Article  MathSciNet  Google Scholar 

  9. Madjarevic, D., Ruggeri, T., Simic, S.: Shock structure and temperature overshoot in macroscopic multi-temperature model of mixtures. Phys. Fluids 26(10), 106102 (2014)

    Article  Google Scholar 

  10. Bisi, M., Conforto, F., Martalò, G.: Sub-shock formation in Grad 10-moment equations for a binary gas mixture. Contin. Mech. Thermodyn. 28(5), 1295–1324 (2016)

    Article  MathSciNet  Google Scholar 

  11. Conforto, F., Mentrelli, A., Ruggeri, T.: Shock structure and multiple sub-shocks in binary mixtures of Eulerian fluids. Ric. Mat. 66(1), 221–331 (2017)

    Article  MathSciNet  Google Scholar 

  12. Artale, V., Conforto, F., Martalò, G., Ricciardello, A.: Shock structure and multiple sub-shocks in Grad 10-moment binary mixtures of monoatomic gases. Ric. Mat. 68(2), 485–502 (2019)

    Article  MathSciNet  Google Scholar 

  13. Ruggeri, T.: On the shock structure problem in non-equilibrium thermodynamics of gases. Transp. Theory Stat. Phys. 25(3–5), 567–574 (1996)

    Article  MathSciNet  Google Scholar 

  14. Alsmeyer, H.: Density profiles in argon and nitrogen shock waves measured by the absorption of an electron beam. J. Fluid Mech. 74(3), 497–513 (1976)

    Article  Google Scholar 

  15. Gilbarg, D., Paolucci, D.: The structure of shock waves in the continuum theory of fluids. J. Ration. Mech. Anal. 2, 617–642 (1953)

    MathSciNet  MATH  Google Scholar 

  16. Bobylev, A.V., Bisi, M., Groppi, M., Spiga, G., Potapenko, I.F.: A general consistent BGK model for gas mixtures. Kinet. Relat. Models 11(6), 1377–1393 (2018)

    Article  MathSciNet  Google Scholar 

  17. Bisi, M., Bobylev, A.V., Groppi, M., Spiga, G.: Hydrodynamic equations from a BGK model for inert gas mixtures. In: AIP Conference Proceedings, vol. 2132, no. 1, 130010. AIP Publishing LLC (2019)

  18. Kestin, J., Knierim, K., Mason, E.A., Najafi, B., Ro, S.T., Waldman, M.: Equilibrium and transport properties of the noble gases and their mixtures at low density. J. Phys. Chem. Ref. Data 13(1), 229–303 (1984)

    Article  Google Scholar 

  19. Chapman, S., Cowling, T.G., Burnett, D.: The Mathematical Theory of Non-uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  20. Bobylev, A.V., Ostmo, S., Ytrehus, T.: Qualitative analysis of the Navier–Stokes equations for evaporation-condensation problems. Phys. Fluids 8(7), 1764–1773 (1996)

    Article  Google Scholar 

  21. Bisi, M., Groppi, M., Martalò, G.: The evaporation-condensation problem for a binary mixture of rarefied gases. Continuum Mechanics and Thermodynamics (2019). https://doi.org/10.1007/s00161-019-00814-x. (In press)

    Article  MATH  Google Scholar 

  22. Sherman, F.S.: Shock-wave structure in binary mixtures of chemically inert perfect gases. J. Fluid Mech. 8(3), 465–480 (1960)

    Article  MathSciNet  Google Scholar 

  23. Harnett, L.N., Muntz, E.P.: Experimental investigation of normal shock wave velocity distribution functions in mixtures of argon and helium. Phys. Fluids 15(4), 565–572 (1972)

    Article  Google Scholar 

  24. Josyula, E., Vedula, P., Bailey, W.: Kinetic solution of shock structure in a non-reactive gas mixture. In: 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, pp. 1–16 (2010)

Download references

Acknowledgements

This contribution is dedicated to Professor Giuseppe Toscani on the occasion of his 70th birthday. This work was performed in the frame of activities sponsored by the Italian National Group of Mathematical Physics (GNFM-INdAM) and by the University of Parma (Italy), and supported by the Italian National Research Project Multiscale phenomena in Continuum Mechanics: singular limits, off-equilibrium and transitions (Prin 2017YBKNCE) and by the French-Italian program Galileo, G18-296 Modelli cinetici classici e quantistici e loro limiti idrodinamici: aspetti teorici e applicativi. Fruitful discussions with Professor Tommaso Ruggeri on the subject of the paper are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Martalò.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bisi, M., Groppi, M. & Martalò, G. On the shock thickness for a binary gas mixture. Ricerche mat 70, 251–266 (2021). https://doi.org/10.1007/s11587-020-00503-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11587-020-00503-x

Keywords

Mathematics Subject Classification

Navigation