Skip to main content
Log in

Discontinuous Galerkin approach for the simulation of charge transport in graphene

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

The Boltzmann equation for charge transport in monolayer graphene is numerically solved by using a discontinuous Galerkin method. The numerical fluxes are based on a uniform non oscillatory reconstruction. The numerical scheme has been tested by simulating the electron dynamics in a graphene field effect transistor. To the best of our knowledge the presented simulations are the first ones using a full Boltzmann equation in graphene devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Maric, I., Han, M.Y., Young, A.F., Ozyilmaz, B., Kim, P., Shepard, K.L.: Current saturation in zero-bandgap, top-gated graphene field-effect transistors. Nat. Nanotechnol. 3, 654–659 (2008)

    Article  Google Scholar 

  2. Schwierz, F.: Graphene transistors. Nat. Nanotechnol. 5, 487–496 (2010)

    Article  Google Scholar 

  3. Nastasi, G., Romano, V.: A full coupled drift-diffusion-Poisson simulation of a GFET. Commun. Nonlinear Sci. Numer. Simul. 87, 105300 (2020)

    Article  MathSciNet  Google Scholar 

  4. Jiménez, D., Moldovan, O.: Explicit drain-current model of graphene field effect transistors targeting analog and radio-frequency applications. IEEE Trans. Electron Devices 65, 739–746 (2018)

    Article  Google Scholar 

  5. Upadhyay, A.K., Kushwaha, A.K., Vishvakarma, S.K.: A unified scalable quasi-ballistic transport model of GFET for circuit simulations. IEEE Trans. Electron Devices 58, 4049–4052 (2018)

    Google Scholar 

  6. Dorgan, V.E., Bae, M.-H., Pop, E.: Mobility and saturation velocity in graphene on SiO\(_2\). Appl. Phys. Lett. 97, 082112 (2010)

    Article  Google Scholar 

  7. Nastasi, G., Romano, V.: Improved mobility models for charge transport in graphene. Commun. Appl. Ind. Math. 10, 41–52 (2019)

    MathSciNet  MATH  Google Scholar 

  8. Barletti, L.: Hydrodynamic equations for electrons in graphene obtained from the maximum entropy principle. J. Math. Phys. 55(8), 083303 (2014)

    Article  MathSciNet  Google Scholar 

  9. Camiola, V.D., Romano, V.: Hydrodynamical model for charge transport in graphene. J. Stat. Phys. 157, 114–1137 (2014)

    Article  MathSciNet  Google Scholar 

  10. Luca, L., Romano, V.: Comparing linear and nonlinear hydrodynamical models for charge transport in graphene based on the maximum entropy principle. Int. J. Non-linear Mech. 104, 39–58 (2018)

    Article  Google Scholar 

  11. Luca, L., Romano, V.: Quantum corrected hydrodynamic models for charge transport in graphene. Ann. Phys. 406, 30–53 (2019)

    Article  MathSciNet  Google Scholar 

  12. Muscato, O., Castiglione, T., Di Stefano, V., Coco, A.: Low-field electron mobility evaluation in silicon nanowire transistors using an extended hydrodynamic model. J. Math. Ind. 8, 14 (2018)

    Article  MathSciNet  Google Scholar 

  13. Camiola, V.D., Mascali, G., Romano, V.: Charge Transport in Low Dimensional Semiconductor Structures, Mathematics in Industry, 31. Springer International Publishing, Berlin (2020)

    MATH  Google Scholar 

  14. Coco, M., Mascali, G., Romano, V.: Monte Carlo analysis of thermal effects in monolayer graphene. J. Comput. Theor. Transp. 45(7), 540–553 (2016)

    Article  MathSciNet  Google Scholar 

  15. Coco, M., Romano, V.: Simulation of electron–phonon coupling and heating dynamics in suspended monolayer graphene including all the phonon branches. J. Heat Transf. 45, 540–553 (2016)

    Google Scholar 

  16. Mascali, G., Romano, V.: Charge transport in graphene including thermal effects. SIAM J. Appl. Math. 77, 593–613 (2017)

    Article  MathSciNet  Google Scholar 

  17. Mascali, G., Romano, V.: Exploitation of the maximum entropy principle in mathematical modeling of charge transport in semiconductors. Entropy 19(1), 36 (2017)

    Article  Google Scholar 

  18. Mascali, G., Romano, V.: A hierarchy of macroscopic models for phonon transport in graphene. Phys. A 548, 124489 (2020)

    Article  MathSciNet  Google Scholar 

  19. Cheng, Y., Gamba, I.M., Majorana, A., Shu, C.-W.: A discontinuous Galerkin solver for Boltzmann–Poisson systems in nano devices. Comput. Methods Appl. Mech. Eng. 198(37–40), 3130–3150 (2009)

    Article  MathSciNet  Google Scholar 

  20. Cheng, Y., Gamba, I.M., Majorana, A., Shu, C.-W.: A brief survey of the discontinuous Galerkin method for the Boltzmann–Poisson equations. Boletin de la Sociedad Espanola de Matematica Aplicada 54, 47–64 (2011)

    MathSciNet  MATH  Google Scholar 

  21. Romano, V., Majorana, A., Coco, M.: DSMC method consistent with the Pauli exclusion principle and comparison with deterministic solutions for charge transport in graphene. J. Comput. Phys. 302, 267–284 (2015)

    Article  MathSciNet  Google Scholar 

  22. Coco, M., Majorana, A., Romano, V.: Cross validation of discontinuous Galerkin method and Monte Carlo simulations of charge transport in graphene on substrate. Ricerche Mat. 66, 201–220 (2017)

    Article  MathSciNet  Google Scholar 

  23. Majorana, A., Nastasi, G., Romano, V.: Simulation of bipolar charge transport in graphene by using a discontinuous Galerkin method. Commun. Comput. Phys. 26(1), 114–134 (2019)

    Article  MathSciNet  Google Scholar 

  24. Coco, M., Majorana, A., Nastasi, G., Romano, V.: High-field mobility in graphene on substrate with a proper inclusion of the Pauli exclusion principle, Atti Accad. Pelorit. Pericol. Cl. Sci. Fis. Mat. Nat. 96(S1), A6 (2019)

    Google Scholar 

  25. Lichtenberger, P., Morandi, O., Schürrer, F.: High-field transport and optical phonon scattering in graphene. Phys. Rev. B 84, 045406 (2011)

    Article  Google Scholar 

  26. Nastasi, G., Romano, V.: Simulation of graphene field effect transistors, In: Proceedings of SCEE 2018, Mathematics in Industry, Springer (in press)

  27. Landauer, G.M., Jiménez, D., Gonzàlez, J.L.: An accurate and Verilog-A compatible compact model for graphene field-effect transistors. IEEE Trans. Nanotechnol. 13(5), 895 (2014)

    Article  Google Scholar 

  28. Coco, M., Nastasi, G.: Simulation of bipolar charge transport in graphene on h-BN. COMPEL 39(2), 449–465 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from INdAM (GNFM) and from Università degli Studi di Catania, Piano della Ricerca 2016/2018 Linea di intervento 2. The author G.N. acknowledges the support from Progetto Giovani GNFM 2019, Modelli matematici, numerici e simulazione del trasporto di cariche e fononi nel grafene.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vittorio Romano.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nastasi, G., Romano, V. Discontinuous Galerkin approach for the simulation of charge transport in graphene. Ricerche mat 70, 149–165 (2021). https://doi.org/10.1007/s11587-020-00530-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11587-020-00530-8

Keywords

Mathematics Subject Classification

Navigation