Skip to main content
Log in

Two-phase analysis of blood flow through a stenosed artery with the effects of chemical reaction and radiation

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

The paper presents a study related to the two-phase analysis of pulsatile blood flow through a narrowed stenosed artery with radiation and the chemical effects. In the model, a vertical artery is considered in which the flow of blood is assumed vertical upward and the direction of an external applied magnetic is in the radial direction of the flow. To understand the behavior of blood flow, graphs of the velocity profile, wall shear stress, flow rate, flow impedance and concentration profile are portrayed with different values of the magnetic and radiation parameters. In order to validate the results, a comparative study is presented between the single-phase and two-phase model of the blood flow, which shows that the two-phase model fits more accurately with the experimental data than the single-phase model, as mean errors are \(0.3\%\) for the two-phase model while it is \(1\%\) for single-phase model. For pulsatile flow, the phase difference between the pressure gradient and the flow rate is displayed with the effects of the magnetic field and different heights of the stenosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Ku, D.N.: Blood flow in arteries. Annu. Rev. Fluid Mech. 29(1), 399–434 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  2. Medvedev, A.E., Fomin, V.M.: Two-phase blood-flow model in large and small vessels. In: Rudenko, O.V. (ed.) Doklady Physics, vol. 56, pp. 610–613. Springer (2011)

  3. Barbee, J.H., Cokelet, G.R.: The Fahraeus effect. Microvasc. Res. 3(1), 6–16 (1971)

    Article  CAS  PubMed  Google Scholar 

  4. Fåhræus, R., Lindqvist, T.: The viscosity of the blood in narrow capillary tubes. Am. J. Physiol. Leg. Content 96(3), 562–568 (1931)

    Article  Google Scholar 

  5. Verma, S.R.: Analytical study of a two-phase model for steady flow of blood in a circular tube. Int. J. Eng. Res. Appl. 1(4), 1–10 (2014)

    Google Scholar 

  6. Sharan, M., Popel, A.S.: A two-phase model for flow of blood in narrow tubes with increased effective viscosity near the wall. Biorheology 38(5, 6), 415–428 (2001)

    CAS  PubMed  Google Scholar 

  7. Ponalagusamy, R.: Two-fluid model for blood flow through a tapered arterial stenosis: effect of non-zero couple stress boundary condition at the interface. Int. J. Appl. Comput. Math. 38(2), 1–18 (2016)

    MathSciNet  Google Scholar 

  8. Sankar, D.S.: Two-phase non-linear model for blood flow in asymmetric and axisymmetric stenosed arteries. Int. J. Non-Linear Mech. 46(1), 296–305 (2011)

    Article  ADS  Google Scholar 

  9. Cavalcanti, S.: Hemodynamics of an artery with mild stenosis. J. Biomech. 28(4), 387–399 (1995)

    Article  CAS  PubMed  Google Scholar 

  10. Ponalagusamy, R., Selvi, R.T.: Influence of magnetic field and heat transfer on two-phase fluid model for oscillatory blood flow in an arterial stenosis. Meccanica 50(4), 927–943 (2015)

    Article  MathSciNet  Google Scholar 

  11. Ponalagusamy, R,, Priyadharshini, S.: Numerical investigation on two-fluid model (micropolar-Newtonian) for pulsatile flow of blood in a tapered arterial stenosis with radially variable magnetic field and core fluid viscosity. Comput. Appl. Math. 37, 1–25 (2016)

  12. Mirza, I.A., Abdulhameed, M., Vieru, D., Shafie, S.: Transient electro-magneto-hydrodynamic two-phase blood flow and thermal transport through a capillary vessel. Comput. Methods Programs Biomed. 137(2016), 149–166 (2016)

    Article  CAS  PubMed  Google Scholar 

  13. Sapareto, S.A., Dewey, W.C.: Thermal dose determination in cancer therapy. Int. J. Radiat. Oncol. Biol. Phys. 10(6), 787–800 (1984)

    Article  CAS  PubMed  Google Scholar 

  14. Damianou, C., Hynynen, K.: Focal spacing and near-field heating during pulsed high temperature ultrasound therapy. Ultrasound Med. Biol. 19(9), 777–787 (1993)

    Article  CAS  PubMed  Google Scholar 

  15. Szasz, A., et al.: Hyperthermia, a modality in the wings. J. Cancer Res. Ther. 3(1), 56 (2007)

    Article  CAS  PubMed  Google Scholar 

  16. Sharma, B.K., Mishra, A., Gupta, S.: Heat and mass transfer in magneto-biofluid flow through a non-Darcian porous medium with Joule effect. J. Eng. Phys. Thermophys. 86(4), 766–774 (2013)

    Article  CAS  Google Scholar 

  17. Sharma, B.K., Sharma, M., Gaur, R.K., Mishra, A.: Mathematical modeling of magneto pulsatile blood flow through a porous medium with a heat source. Int. J. Appl. Mech. Eng. 20(2), 385–396 (2015)

    Article  Google Scholar 

  18. Sinha, A., Shit, G.C.: Electromagnetohydrodynamic flow of blood and heat transfer in a capillary with thermal radiation. J. Magn. Magn. Mater. 378, 143–151 (2015)

    Article  ADS  CAS  Google Scholar 

  19. Tripathi, B., Sharma, B.K.: Influence of heat and mass transfer on MHD two-phase blood flow with radiation. In: AIP Conference Proceedings, vol. 1975, p. 030009. AIP Publishing (2018)

  20. Hernandez, T., et al.: Alligator metabolism studies on chemical reactions in vivo. Comp. Biochem. Physiol. Part B Comp. Biochem. 74(1), 1–175 (1983)

    Article  MathSciNet  Google Scholar 

  21. Xu, Z., Chen, N., Shadden, S.C., Marsden, J.E., Kamocka, M.M., Rosen, E.D., Alber, M.: Study of blood flow impact on growth of thrombi using a multiscale model. Soft Matter 5(4), 769–779 (2009)

    Article  ADS  CAS  Google Scholar 

  22. Sharma, M., Gaur, R.K.: Effect of variable viscosity on chemically reacting magneto-blood flow with heat and mass transfer. Glob. J. Pure Appl. Math. 13(3), 2017 (2017)

    Google Scholar 

  23. Mekheimer, K.S., El Kot, M.A.: The micropolar fluid model for blood flow through a tapered artery with a stenosis. Acta. Mech. Sin. 24(6), 637–644 (2008)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  24. Sankar, D.S., Lee, U.: Two-phase non-linear model for the flow through stenosed blood vessels. J. Mech. Sci. Technol. 21(4), 678–689 (2007)

    Article  Google Scholar 

  25. Nadeem, S., Akbar, N.S., Hayat, T., Hendi, A.A.: Influence of heat and mass transfer on newtonian biomagnetic fluid of blood flow through a tapered porous arteries with a stenosis. Transp. Porous Media 91(1), 81–100 (2012)

    Article  MathSciNet  CAS  Google Scholar 

  26. Cogley, A.C., Gilles, S.E., Vincenti, W.G.: Differential approximation for radiative transfer in a nongrey gas near equilibrium. AIAA J. 6(3), 551–553 (1968)

    Article  ADS  Google Scholar 

  27. Sharma, B.K., Agarwal, M., Chaudhary, R.C.: Radiation effect on temperature distribution in three-dimensional Couette flow with suction or injection. Appl. Math. Mech. 28(3), 309–316 (2007)

    Article  Google Scholar 

  28. Ogulu, A., Abbey, T.M.: Simulation of heat transfer on an oscillatory blood flow in an indented porous artery. Int. Commun. Heat Mass Transf. 32(7), 983–989 (2005)

    Article  CAS  Google Scholar 

  29. San, O., Staples, A.E.: Dynamics of pulsatile flows through elastic microtubes. Int. J. Appl. Mech. 4(1), 1250006 (2012)

    Article  Google Scholar 

  30. Trivedi, R.A., U-King-Im, J., Graves, M.J., Horsley, J., Goddard, M., Kirkpatrick, P.J., Gillard, J.H.: Multi-sequence in vivo MRI can quantify fibrous cap and lipid core components in human carotid atherosclerotic plaques. Eur. J. Vasc. Endovasc. Surg. 28(2), 207–213 (2004)

    Article  CAS  PubMed  Google Scholar 

  31. Swartz, R.H., Bhuta, S.S., Farb, R.I., Agid, R., Willinsky, R.A., Butany, J., Wasserman, B.A., Johnstone, D.M., Silver, F.L., Mikulis, D.J., et al.: Intracranial arterial wall imaging using high-resolution 3-tesla contrast-enhanced MRI. Neurology 72(7), 627–634 (2009)

    Article  CAS  PubMed  Google Scholar 

  32. Zaman, A., Ali, N., Bég, O.A., Sajid, M.: Heat and mass transfer to blood flowing through a tapered overlapping stenosed artery. Int. J. Heat Mass Transf. 95, 1084–1095 (2016)

    Article  Google Scholar 

  33. Misra, J.C., Adhikary, S.D.: MHD oscillatory channel flow, heat and mass transfer in a physiological fluid in presence of chemical reaction. Alex. Eng. J. 55(1), 287–297 (2016)

    Article  Google Scholar 

  34. Sharan, M., Singh, B., Kumar, P.: A two-layer model for studying the effect of plasma layer on the delivery of oxygen to tissue using a finite element method. Appl. Math. Model. 21(7), 419–426 (1997)

    Article  Google Scholar 

  35. Fujiwara, H., Ishikawa, T., Lima, R., Matsuki, N., Imai, Y., Kaji, H., Nishizawa, M., Yamaguchi, T.: Red blood cell motions in high-hematocrit blood flowing through a stenosed microchannel. J. Biomech. 42(7), 838–843 (2009)

    Article  CAS  PubMed  Google Scholar 

  36. Bugliarello, G., Sevilla, J.: Velocity distribution and other characteristics of steady and pulsatile blood flow in fine glass tubes. Biorheology 7(2), 85–107 (1970)

    Article  CAS  PubMed  Google Scholar 

  37. Haik, Y., Pai, V., Chen, C.-J.: Apparent viscosity of human blood in a high static magnetic field. J. Magn. Magn. Mater. 225(1–2), 180–186 (2001)

    Article  ADS  CAS  Google Scholar 

  38. Tzirtzilakis, E.E.: A mathematical model for blood flow in magnetic field. Phys. Fluids 17(7), 077103 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  39. Cavalcanti, S.: Wall shear stress in stenotic artery. In: Engineering in Medicine and Biology Society, 1992 14th Annual International Conference of the IEEE, vol. 2, pp. 421–422. IEEE (1992)

  40. Shit, G.C., Roy, M.: Effect of induced magnetic field on blood flow through a constricted channel: an analytical approach. J. Mech. Med. Biol. 16(3), 1650030 (2016)

    Article  Google Scholar 

  41. Ahmed, S.A., Giddens, D.P.: Velocity measurements in steady flow through axisymmetric stenoses at moderate Reynolds numbers. J. Biomech. 16(7), 505509–507516 (1983)

    Article  Google Scholar 

Download references

Acknowledgements

Authors are sincerely thankful to the Department of Science and Technology, Government of India (SR/FST/MSI-090/2013(C)) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhavya Tripathi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

$$\begin{aligned} {\beta _1}&=-\left( \frac{{K_0}{{N}^2}}{{\alpha _0}}+{i\frac{P_e}{\rho _0}\left( \frac{K_0}{s_0}\right) }\right) , \quad \beta _2 = -\left( {{N}^2}+i{P_e}\right) .\\ {\gamma _1}&=-\left( i{Re}{D_0}{S_c}+\frac{E}{E_0}{D_0}{S_c}\right) , \quad {\gamma _2} = -\left( i{Re}{S_c}+{E}{S_c}\right) \\ \lambda _1&= -\left( M^2+\frac{{\mu _0}{Re}}{\rho _0}i\right) \quad \lambda _2= -\left( M^2+{{Re}i}\right) \\ {U_1}&=\left( \frac{{J_0}({\sqrt{\beta _2}}{R_1})}{{J_0}({\sqrt{\beta _1}}{R_1})}-\frac{{J_0}({\sqrt{\beta _2}}{R})}{{Y_0}({\sqrt{\beta _2}}{R})}{\frac{{Y_0}({\sqrt{\beta _2}}{R_1})}{{J_0}({\sqrt{\beta _1}}{R_1})}}\right) ,\\ {U_2}&=\frac{{Y_0}({\sqrt{\beta _2}}{R_1}))}{{J_0}({\sqrt{\beta _1}}{R_1}){Y_0(\sqrt{\beta _2}R)}}\\ {U_3}&={\sqrt{\beta _1}}{U_1}{J_1}(\sqrt{\beta _1}{R_1})-\sqrt{\beta _2}\left( {{{J_1}({\sqrt{\beta _2}}{R_1})}-{\frac{{J_0}({\sqrt{\beta _2}}{R})}{{Y_0(\sqrt{\beta _2}R)}}{{Y_1}}({\sqrt{\beta _2}}{R_1})}}\right) \\ {U_4}&=\left( \frac{{J_0}({\sqrt{\gamma _2}}{R_1})}{{J_0}({\sqrt{\gamma _1}}{R_1})}-\frac{{J_0}({\sqrt{\gamma _2}}{R})}{{J_0}({\sqrt{\gamma _1}}{R_1})}{\frac{{Y_0}({\sqrt{\gamma _2}}{R_1})}{{Y_0}({\sqrt{\gamma _2}}{R})}}\right) ,\\ {U_5}&=\frac{{Y_0}({\sqrt{\gamma _2}}{R_1}))}{{J_0}({\sqrt{\gamma _1}}{R_1}){Y_0(\sqrt{\gamma _2}R)}}\\ {U_6}&={\sqrt{\gamma _1}}{U_5}{J_1}(\sqrt{\gamma _1}{R_1})-\sqrt{\gamma _2}{\left( {{J_1}({\sqrt{\gamma _2}}{R_1})}-{\frac{{J_0}({\sqrt{\gamma _2}}{R})}{{Y_0(\sqrt{\gamma _2}R)}}.{{Y_1}({\sqrt{\gamma _2}}{R_1})}} \right) }\\ D_1&=-{A_1}(R_1){J_0}(\sqrt{\lambda _1}{R_1})-{B_1}(R_1){Y_0}(\sqrt{\lambda _1}{R_1})+{A_2}(R_1){J_0}(\sqrt{\lambda _2}{R_1})\\&\quad +{B_2}(R_1){Y_0}(\sqrt{\lambda _2}{R_1})\\ D_2&= -{A_2}(R){J_0}(\sqrt{\lambda _2}{R})-{B_2}(R){Y_0}(\sqrt{\lambda _2}{R})\\ D_3&= -\frac{\partial {A_1(R_1)}}{\partial {r}} {J_0}(\sqrt{\lambda _1}{R_1})+{A_1}(R_1){\sqrt{\lambda _1}}{J_1}(\sqrt{\lambda _1}{R_1}) -\frac{\partial {B_1(R_1)}}{\partial {r}} {Y_0}(\sqrt{\lambda _1}{R_1})\\&\quad +{B_1}(R_1){\sqrt{\lambda _1}}{Y_1}(\sqrt{\lambda _1}{R_1})+\frac{\partial {A_2(R_1)}}{\partial {r}} {J_0}(\sqrt{\lambda _2}{R_1})+\frac{\partial {B_2(R_1)}}{\partial {r}} {Y_0}(\sqrt{\lambda _2}{R_1})\\&\quad -{A_2}(R_1){\sqrt{\lambda _2}}{J_1}(\sqrt{\lambda _2}{R_1})-{B_2}(R_1){\sqrt{\lambda _2}}{Y_1}(\sqrt{\lambda _2}{R_1}) \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathi, B., Sharma, B.K. Two-phase analysis of blood flow through a stenosed artery with the effects of chemical reaction and radiation. Ricerche mat 73, 151–177 (2024). https://doi.org/10.1007/s11587-021-00571-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11587-021-00571-7

Keywords

Mathematics Subject Classification

Navigation