Skip to main content
Log in

An estimate for the anisotropic maximum curvature in the planar case

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

We fix a Finsler norm F and, using the anisotropic curvature flow, we prove that in the plane the anisotropic maximum curvature \(k^F_{\max }\) of a smooth Jordan curve is such that \( k^F_{\max }(\gamma )\ge \sqrt{\kappa /A}\), where A is the area enclosed by \(\gamma \) and \(\kappa \) the area of the unitary Wulff shape associated to the anisotropy F.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alvino, A., Ferone, V., Lions, P.-L., Trombetti, G.: Convex symmetrization and applications. Ann. Inst. H. Poincarè Anal. Non Linéaire 14(2), 275–293 (1997)

    Article  MathSciNet  Google Scholar 

  2. Andrews, B.: Volume-preserving anisotropic mean curvature flow. Indiana Univ. Math. J. 50(2), 783–827 (2001)

    Article  MathSciNet  Google Scholar 

  3. Andrews, B., Bryan, P.: Curvature bound for curve shortening flow via distance comparison and a direct proof of Grayson’s theorem. J. Reine Angew. Math. 653, 179–187 (2011)

    MathSciNet  MATH  Google Scholar 

  4. Bandle, C.: Isoperimetric Inequalities and Applications, Monographs and Studies in Mathematics, 7. Pitman. Advanced Publishing Program, Boston (1980)

    Google Scholar 

  5. Bareket, M.: On an isoperimetric inequality for the first eigenvalue of a boundary value problem. SIAM J. Math. Anal. 8(2), 280–287 (1977)

    Article  MathSciNet  Google Scholar 

  6. Bellettini, G., Paolini, M.: Anisotropic motion by mean curvature in the context of Finsler geometry. Hokkaido Math. J. 25(3), 537–566 (1996)

    Article  MathSciNet  Google Scholar 

  7. Bucur, D., Henrot, A.: A new isoperimetric inequality for the elasticae. J. Eur. Math. Soc. (2017)

  8. Busemann, H.: The isoperimetric problem for Minkowski area. Am. J. Math. 71, 743–762 (1949)

    Article  MathSciNet  Google Scholar 

  9. Chou, K.-S., Zhu, X.-P.: The Curve Shortening Problem. Chapman Hall/CRC, Boca Raton (2001)

    Book  Google Scholar 

  10. Chou, K.-S., Zhu, X.-P.: A convexity theorem for a class of anisotropic flows of plane curves. Indiana Univ. Math. J. 48(1), 139–154 (1999)

    Article  MathSciNet  Google Scholar 

  11. Dacorogna, B., Pfister, C.E.: Wulff theorem and best constant in Sobolev inequality. J. Math. Pures Appl. (9) 71(2), 97–118 (1992)

    MathSciNet  MATH  Google Scholar 

  12. Della Pietra, F., Gavitone, N.: Faber-Krahn inequality for anisotropic eigenvalue problems with Robin boundary conditions. Potential Anal. 41(4), 1147–1166 (2014)

    Article  MathSciNet  Google Scholar 

  13. Della Pietra, F., Gavitone, N.: Symmetrization with respect to the anisotropic perimeter and applications. Math. Ann. 363, 953–971 (2015)

    Article  MathSciNet  Google Scholar 

  14. Ferone, V., Kawohl, B., Nitsch, C.: The elastica problem under area constraint. Mat. Ann. 365, 987–1015 (2016)

    Article  MathSciNet  Google Scholar 

  15. Ferone, V., Kawohl, B., Nitsch, C.: Generalized elastica problem under area constraint. Math. Res. Lett. 25(2), 521–533 (2018)

    Article  MathSciNet  Google Scholar 

  16. Ferone, V., Nitsch, C., Trombetti, C.: On the maximal mean curvature of a smooth surface. CRAS 354, 891–895 (2016)

    MathSciNet  MATH  Google Scholar 

  17. Fonseca, I., Müller, S.: A uniqueness proof for the Wulff theorem. Proc. R. Soc. Edinburgh Sect. A 119(1–2), 125–136 (1991)

    Article  MathSciNet  Google Scholar 

  18. Freitas, P., Krejčiřík, D.: The first Robin eigenvalue with negative boundary parameter. Adv. Math. 280, 322–339 (2015)

    Article  MathSciNet  Google Scholar 

  19. Gage, M., Hamilton, R.S.: The heat equation shrinking convex plane curves. J. Differ. Geom. 23, 69–96 (1986)

    Article  MathSciNet  Google Scholar 

  20. Gage, M., Li, Y.: Evolving plane curves by curvature in relative geometries. II. Duke Math. J. 75(1), 79–98 (1994)

    Article  MathSciNet  Google Scholar 

  21. Gavitone, N., Trani, L.: On the first Robin eigenvalue of a class of anisotropic operators. Milan J. Math. 86(2), 201–223 (2018)

    Article  MathSciNet  Google Scholar 

  22. Grayson, M.A.: The heat equation shrinks embedded plane curves to round points. J. Differ. Geom. 26, 285–314 (1987)

    Article  MathSciNet  Google Scholar 

  23. Green, M., Osher, S.: Steiner polynomials, Wulff flows, and some new isoperimetric inequalities for convex plane curves. Asian J. Math. 3(3), 659–676 (1999)

    Article  MathSciNet  Google Scholar 

  24. Howard, R., Treibergs, A.: A reverse isoperimetric inequality, stability and extremal theorems for plane curves with bounded curvature. Rocky Mt. J. Math. 25, 635–684 (1995)

    Article  MathSciNet  Google Scholar 

  25. Mercier, G., Novaga, M., Pozzi, P.: Anisotropic curvature flow of immersed curves. Commun. Anal. Geom. 27(4), 937–964 (2019)

    Article  MathSciNet  Google Scholar 

  26. Pankrashkin, K.: An inequality for the maximum curvature through a geometric flow. Arch. Math. (Basel) 105(3), 297–300 (2015)

    Article  MathSciNet  Google Scholar 

  27. Pankrashkin, K., Popoff, N.: Mean curvature bounds and eigenvalues of Robin Laplancians. Calc. Var. Partial Differ. Equ. 54(2), 1947–1961 (2015)

    Article  Google Scholar 

  28. Pestov, G., Ionin, V.: On the largest possible circle imbedded in a given closed curve. Dokl. Akad. Nauk SSSR 127, 1170–1172 (1959). (in Russian)

    MathSciNet  MATH  Google Scholar 

  29. Palmer, B.: Stability of the Wulff shape. Proc. Am. Math. Soc. 126(12), 3661–3667 (1998)

    Article  MathSciNet  Google Scholar 

  30. Paoli, G., Trani, L.: Two estimates for the first Robin eigenvalue of the Finsler Laplacian with negative boundary parameter. J. Optim. Theory Appl. 181(3), 743–757 (2019)

    Article  MathSciNet  Google Scholar 

  31. Schneider, R.: Convex Bodies: the Brunn–Minkowski Theory. Second Expanded Edition. Encyclopedia of Mathematics and its Applications, 151. Cambridge University Press, Cambridge (2014)

    Google Scholar 

  32. Winklmann, S.: A note on the stability of the Wulff shape. Arch. der Math. 87(3), 272–279 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gloria Paoli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paoli, G. An estimate for the anisotropic maximum curvature in the planar case. Ricerche mat 71, 121–133 (2022). https://doi.org/10.1007/s11587-021-00573-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11587-021-00573-5

Keywords

Mathematics Subject Classification

Navigation