Skip to main content
Log in

Inverse source problem for a space-time fractional diffusion equation

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

This paper is concerned with an inverse source problem for a space-time fractional diffusion equation. We aim to identify an unknown source term from partially observed data. The employed model involves the Caputo fractional derivative in time and the non-local fractional Laplacian operator in space. The well-posedness of the forward problem is discussed. The considered ill-posed inverse source problem is formulated as a minimization one. The existence, uniqueness and stability of the solution of the minimization problem are examined. An iterative process is developed for identifying the unknown source term. A numerical implementation of the proposed approach is performed. The convergence of the discretized fractional derivatives is analyzed. The efficiency and accuracy of the proposed identification algorithm are confirmed by some numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Acosta, G., Bersetche, F., Borthagaray, J.P.: A short FE implementation for a 2D homogeneous Dirichlet problem of a fractional Laplacian. Comput. Math. Appl. 74(4), 784–816 (2017)

    Article  MathSciNet  Google Scholar 

  2. Acosta, G., Bersetche, F.M., Borthagaray, J.P.: Finite element approximations for fractional evolution problems. Fract. Calc. Appl. Anal. (2019). https://doi.org/10.1515/fca-2019-0042

    Article  MathSciNet  Google Scholar 

  3. Almeida, R., Torres, D.F.: Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives. Commun. Nonlinear Sci. Numer. Simul. 16(3), 1490–1500 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  4. Andrle, M., ElBadia, A.: On an inverse source problem for the heat equation. Application to a pollution detection problem, II. J. Inverse Probl. Sci. Eng. 10, 10 (2015). https://doi.org/10.1080/17415977.2014.906415

    Article  MathSciNet  Google Scholar 

  5. Atmadja, J., Bagtzoglou, A.C.: State of the art report on mathematical methods for groundwater pollution source identification. Environ. Forensics 2(3), 205–214 (2001)

    Article  CAS  Google Scholar 

  6. Agrawal, Om P.: Fractional variational calculus in terms of Riesz fractional derivatives. J. Phys. A Math. Theor. 40, 6287–303 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  7. Barkai, E., Garini, Y., Metzler, R.: Strange kinetics of single molecules in living cells. Phys. Today 65, 29–35 (2012). https://doi.org/10.1063/PT.3.1677

    Article  CAS  Google Scholar 

  8. BenSalah, M., Hassine, M.: Inverse source problem for a diffusion equation involving the fractional spectral Laplacian. Math. Methods Appl. Sci. (2020). https://doi.org/10.1002/mma.6799

    Article  Google Scholar 

  9. Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M.: Application of a fractional advection-dispersion equation. Water Resour. Res. 36, 1403–1412 (2000)

    Article  ADS  Google Scholar 

  10. Cannon, J.R.: Determination of an unknown heat source from overspecified boundary data. SIAM J. Numer. Anal. 5, 275–286 (1968). https://doi.org/10.1137/0705024

    Article  ADS  MathSciNet  Google Scholar 

  11. Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory, 2nd edn. Springer, Berlin (1998)

    Book  Google Scholar 

  12. Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algorithm for linear inverse problems. Commun. Pure Appl. Math. 57, 1413–57 (2004)

    Article  MathSciNet  Google Scholar 

  13. Dipierro, S., Ros-Oton, X., Valdinoci, E.: Nonlocal problems with Neumann boundary conditions. Rev. Mat. Iberoam. 33(2), 377–416 (2017)

    Article  MathSciNet  Google Scholar 

  14. Du, Q., Gunzburger, M., Lehoucq, R.B., Zhou, K.: A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws. Math. Models Methods Appl. Sci. 23(3), 493–540 (2013)

    Article  MathSciNet  Google Scholar 

  15. El Badia, A., Ha-Duong, T.: An inverse source problem in potential analysis. Inverse Probl. 16, 651–663 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  16. Einstein, A.: Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys. 322, 549–60 (1905). https://doi.org/10.1002/andp.19053220806

    Article  Google Scholar 

  17. Foddis, M.L., Montisci, A.: Artificial neural networks based approach for identification of unknown pollution sources in aquifers. In: International Conference on Computational Science and Its Applications, pp. 877–890. Springer, Cham (2020)

  18. Gorenflo, R., Luchko, Yu., Yamamoto, M.: Time-fractional diffusion equation in the fractional Sobolev spaces. Fract. Calc. Appl. Anal. 18(3), 799–820 (2015). https://doi.org/10.1515/fca-2015-0048

    Article  MathSciNet  Google Scholar 

  19. Gorenflo, R., Mainardi, F.: Fractional diffusion processes: probability distributions and continuous time random walk. In: Rangarajan, G., Ding, M. (eds.) Processes with Long-Range Correlations: Theory and Applications, pp. 148–66. Springer, Berlin, Heidelberg (2003). https://doi.org/10.1007/3-540-44832-2_8

    Chapter  Google Scholar 

  20. Goychuk, I.: Anomalous transport of subdiffusing cargos by single kinesin motors: the role of mechano-chemical coupling and anharmonicity of tether. Phys. Biol. 12, 016013 (2015). https://doi.org/10.1088/1478-3975/12/1/016013

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Gupta, G., Pequito, S., Bogdan, P.: Dealing with unknown unknowns: identification and selection of minimal sensing for fractional dynamics with unknown inputs. In: 2018 Annual American Control Conference (ACC), IEEE, Milwaukee, WI (2018), pp. 2814–20. https://doi.org/10.23919/ACC.2018.8430866

  22. Gupta, G., Pequito, S., Bogdan, P.: Learning latent fractional dynamics with unknown unknowns. In: 2019 American Control Conference (ACC). Philadelphia, PA, pp. 217–22 (2019). https://doi.org/10.23919/ACC.2019.8815074

  23. Hatano, Y., Hatano, N.: Dispersive transport of ions in column experiments: an explanation of long-tailed profiles. Water Resour. Res. 34(5), 1027–1033 (1998)

    Article  ADS  CAS  Google Scholar 

  24. Hilfer, R.: Applications of Fractional Calculus in Physics. Word Scientific, Singapore (2000)

    Book  Google Scholar 

  25. Isakov, V.: Inverse Source Problems. Math. Surveys Monogr. 34, AMS, Providence (1990). https://doi.org/10.1090/surv/034

  26. Jeon, J.H., Tejedor, V., Burov, S., Barkai, E., Selhuber-Unkel, C., BergSørensen, K., et al.: In vivo anomalous diffusion and weak ergodicity breaking of lipid granules. Phys. Rev. Lett. 106, 048103 (2011). https://doi.org/10.1103/PhysRevLett.106.048103

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Jiang, D., Liu, Y., Yamamoto, M.: Inverse source problem for the hyperbolic equation with a time-dependent principal part. J. Differ. Equ. 262(1), 653–681 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  28. Jiang, D., Liu, Y., Wang, D.: Numerical reconstruction of the spatial component in the source term of a time-fractional diffusion equation. Adv. Comput. Math (2020). https://doi.org/10.1007/s10444-020-09754-6

    Article  MathSciNet  Google Scholar 

  29. Jin, B., Lazarov, R., Liu, Y., Zhou, Z.: The Galerkin finite element method for a multi-term time-fractional diffusion equation. J. Comput. Phys. 281, 825–843 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  30. Jin, B., Rundell, W.: An inverse problem for a one-dimensional time-fractional diffusion problem. Inverse Probl. 28, 75010–75028 (2012)

    Article  MathSciNet  Google Scholar 

  31. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    Google Scholar 

  32. Koorehdavoudi, H., Bogdan, P., Wei, G., Marculescu, R., Zhuang, J., Carlsen, R.W., et al.: Multi-fractal characterization of bacterial swimming dynamics: a case study on real and simulated serratia marcescens. Proc. R. Soc. A Math. Phys. Eng. Sci. 473, 20170154 (2017). https://doi.org/10.1098/rspa.2017.0154

    Article  ADS  Google Scholar 

  33. Li, Y.S., Sun, L.L., Zhang, Z.Q., Wei, T.: Identification of the time-dependent source term in a multi-term time-fractional diffusion equation. Numer. Algorithms 82, 1279–1301 (2019). https://doi.org/10.1007/s11075-019-00654-5

    Article  MathSciNet  Google Scholar 

  34. Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin (1971)

    Book  Google Scholar 

  35. Liu, F., Meerschaert, M.M., McGough, R.J., Zhuang, P., Liu, X.: Numerical methods for solving the multi-term time-fractional wave-diffusion equation. Fract. Calc. Appl. Anal. 16(1), 9–25 (2013)

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu, Y., Rundell, W., Yamamoto, M.: Strong maximum principle for fractional diffusion equations and an application to an inverse source problem. Fract. Calc. Appl. Anal. 19, 888–906 (2016)

    Article  MathSciNet  Google Scholar 

  37. Lociniczak, L.P.: Analytical studies of a time-fractional porous medium equation: derivation, approximation and applications. Commun. Nonlinear Sci. Numer. Simul. 24, 169–183 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  38. Magin, R.L.: Fractional Calculus in Bioengineering. Begell House Publishers, Redding (2006)

    Google Scholar 

  39. Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Pres, London (2010)

    Book  Google Scholar 

  40. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

  41. Murio, D.A., Mejya, C.E.: Source terms identification for time fractional diffusion equation. Revista Colombiana de Matemás 42, 25–46 (2008)

    ADS  MathSciNet  Google Scholar 

  42. Nakagawa, J., Sakamoto, K., Yamamoto, M.: Overview to mathematical analysis for fractional diffusion equations-new mathematical aspects motivated by industrial collaboration. J. Math. Ind. 2, 99–108 (2010)

    MathSciNet  Google Scholar 

  43. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)

  44. Papo, D.: Functional significance of complex fluctuations in brain activity: from resting state to cognitive neuroscience. Front. Syst. Neurosci. 8, 112 (2014). https://doi.org/10.3389/fnsys.2014.00112

    Article  PubMed  PubMed Central  Google Scholar 

  45. Rossikhin, Y.A., Shitikova, M.V.: Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results. Appl. Mech. Rev. 63(1), 010801 (2010)

    Article  ADS  Google Scholar 

  46. Rundell, W., Zhang, Z.: On the identification of source term in the heat equation from sparse data. SIAM J. Math. Anal. 52(2), 1526–1548 (2020)

    Article  MathSciNet  Google Scholar 

  47. Rundell, W.: An inverse problem for a parabolic partial differential equation. Rocky Mt. J. Math. 13, 679–688 (1983). https://doi.org/10.1216/RMJ-1983-13-4-679

    Article  MathSciNet  Google Scholar 

  48. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon & Breach, Yverdon (1993)

    Google Scholar 

  49. Tolić-Nørrelykke, I.M., Munteanu, E.L., Thon, G., Oddershede, L., Berg-Sorensen, K.: Anomalous diffusion in living yeast cells. Phys. Rev. Lett. 93, 078102 (2004). https://doi.org/10.1103/PhysRevLett.93.078102

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Xue, Y., Bogdan, P.: Constructing compact causal mathematical models for complex dynamics. In: Proceedings of the 8th International Conference on Cyber-Physical Systems. ICCPS ’17. ACM, Pittsburgh, PA, pp. 97–107 (2017). https://doi.org/10.1145/3055004.3055017

  51. Yang, R., Gupta, G., Bogdan, P.: Data-driven perception of neuron point process with unknown unknowns. In: Proceedings of the 10th ACM/IEEE International Conference on Cyber-Physical Systems. ICCPS ’19. Montreal, QC, pp. 259–269 (2019). https://doi.org/10.1145/3302509.3311056

  52. Zhang, Y., Liu, X., Belić, M.R., Zhong, W., Xiao, M.: Propagation dynamics of a light beam in a fractional Schrodinger equation. Phys. Rev. Lett. 115, 180403 (2015)

    Article  ADS  PubMed  Google Scholar 

  53. Zhang, Y., Sun, H., Neupauer, R.M., Straka, P., Kelly, J.F., Lu, B., Zheng, C.: Identification of pollutant source for super-diffusion in aquifers and rivers with bounded domains. Water Resour. Res. 54(9), 7092–7108 (2018)

    Article  ADS  CAS  Google Scholar 

  54. Zhao, J., Xiao, J., Xu, Y.: Stability and convergence of an effective finite element method for multiterm fractional partial differential equations. Abstr. Appl. Anal. Art. ID 857205, 10 (2013)

Download references

Acknowledgements

The authors would like to thank Juan Pablo Borthagaray for pointing the paper [1] and for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed BenSaleh.

Ethics declarations

Conflict of interest

This work does not have any conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Apprendix A

Apprendix A

In this appendix, we provide the proofs of Lemma 3.1, Proposition 3.2, Corollary 3.3 and Proposition 3.4

1.1 Proof of Lemma 3.1

Firstly, let us introduce the following set \(A:=\left\{ {\mathcal {J}}(h), f \in {\mathcal {H}}\right\} \). Using the fact that the function \({\mathcal {J}}\) is non-negative by definition, then, one can derive that the set A is reduced by zero. It follows that \(\displaystyle \inf _{h \in {\mathcal {H}}}{\mathcal {J}}(h)\) is finite. Exploiting the definition of the minimum, then for each \(\varepsilon >0\),

$$\begin{aligned} \exists {\mathcal {Y}}^{\varepsilon } \in A \text { such that } \inf _{h \in {\mathcal {H}}} {\mathcal {J}}(h) \le {\mathcal {Y}}^{\varepsilon } \le \inf _{h \in {\mathcal {H}}} {\mathcal {J}}(h)+\varepsilon , \end{aligned}$$

which implies that for each \(\varepsilon >0\) there exists \(h^{\varepsilon } \in {\mathcal {H}}\), such that \({\mathcal {J}}\left( h^{\varepsilon }\right) ={\mathcal {Y}}^{\varepsilon }\), satisfying

$$\begin{aligned} \inf _{h \in {\mathcal {H}}} {\mathcal {J}}(h) \le {\mathcal {J}} \left( h^{\varepsilon }\right) \le \inf _{h \in {\mathcal {H}}} {\mathcal {J}}(h)+\varepsilon . \end{aligned}$$

Replacing \(\varepsilon \) by \(\frac{1}{n}\), i.e. for each \(n \ge 1,\) there exists \(h^{n} \in {\mathcal {H}}\) satisfies

$$\begin{aligned} \inf _{h \in {\mathcal {H}}} {\mathcal {J}}(h) \le {\mathcal {J}} \left( h^{n}\right) \le \inf _{h \in {\mathcal {H}}} {\mathcal {J}}(h)+\frac{1}{n}, \end{aligned}$$
(25)

tending n to infinity, one can get

$$\begin{aligned} \lim _{n \rightarrow \infty } {\mathcal {J}}\left( h^{n}\right) =\inf _{h \in {\mathcal {H}}} {\mathcal {J}}(h). \end{aligned}$$

1.2 Proof of Proposition 3.2

By construction, the functional \({\mathcal {G}}\) is non-negative. Then, by applying Lemma 3.1, there exists a minimizing sequence \(\lbrace f^n \rbrace _{n \ge 1}\) in \(L^{2}({\mathcal {D}})\) satisfies

$$\begin{aligned} \lim _{n \rightarrow \infty } {\mathcal {G}}\left( f^{n}\right) =\inf _{f \in L^{2}({\mathcal {D}})} {\mathcal {G}}(f). \end{aligned}$$

Using relation (25), one can get

$$\begin{aligned} 0 \le {\mathcal {G}}\left( f^{n}\right) \le {\mathcal {G}}(0)+c =\left\| {\mathcal {O}}^{\delta }\right\| _{L^{2}({\mathcal {S}} \times (0, T))}+c, \end{aligned}$$

here \(c \ge 1\) be an arbitrary constant. It follows,

$$\begin{aligned} \exists B>0, \text { such that }\left\| f^{n}\right\| _{L^{2}({\mathcal {D}})} \le B, \forall n \in {\mathbb {N}}^{*}. \end{aligned}$$

It implies that the sequence \(\left\{ f^{n}\right\} _{n \ge 1},\) is uniformly bounded in \(L^{2}({\mathcal {D}})\). Then, there exist a \(f^{\star } \in L^{2}({\mathcal {D}})\) and a subsequence of \(\left\{ f^{n}\right\} _{n \ge 1},\) still denoted by \(\left\{ f^{n}\right\} _{n \ge 1},\) such that

$$\begin{aligned} f^{n} \rightharpoonup f^{\star } \text { in } L^{2}({\mathcal {D}}) \text { as } n \longrightarrow \infty . \end{aligned}$$

1.3 Proof of Corollary 3.3

The existence of a minimizing sequence \(\left\{ f^{n}\right\} _{n \ge 1}\) of the functional \({\mathcal {G}}\) is guaranteed by Proposition 3.2. And, for each \(n \ge 1\), the function \(u\left( f^{n}\right) \) is solution to (1)–(4) with spatial component in source term \(f=f^{n}\). It follows immediately from Theorem 2.3 and the uniformly boundless of the sequence \(\left\{ f^{n}\right\} _{n \ge 1}\) that the sequence \(\left\{ u\left( f^{n}\right) \right\} _{n \ge 1}\) is uniformly bounded in \({\mathcal {X}}^{\alpha , s}\left( 0, T; L^{2}({\mathcal {D}})\right) \) which leads to the existence of :

  • \(u^{\star } \in {\mathcal {X}}^{\alpha , s}\left( 0, T ; L^{2}({\mathcal {D}})\right) \)

  • a subsequence of \(\left\{ u\left( f^{n}\right) \right\} _{n \ge 1}\) again still denoted by \(\left\{ u\left( f^{n}\right) \right\} _{n \ge 1}\) such that

    $$\begin{aligned} u\left( f^{n}\right) \rightharpoonup u^{\star } \text { in } {\mathcal {X}}^{\alpha , s} \left( 0, T ; L^{2}({\mathcal {D}})\right) . \end{aligned}$$

Its implies

$$\begin{aligned} \partial _{t}^{\alpha } u\left( f^{n}\right) \rightharpoonup \partial _{t}^{\alpha } u^{\star } \text { and }(-\Delta )^{s} u\left( f^{n}\right) \rightharpoonup (-\Delta )^{s} u^{\star }, \text { as } n \longrightarrow \infty . \end{aligned}$$

Using the fact that \(u\left( f^{n}\right) \) satisfies the following weak formulation

$$\begin{aligned} \int _{0}^{T} \int _{{\mathcal {D}}}\left[ \partial _{t}^{\alpha } u\left( f^{n}\right) +(-\Delta )^{s} u\left( f^{n}\right) \right] \varphi d x d t=\int _{0}^{T} \int _{{\mathcal {D}}} f^{n} \varphi d x d t, \quad \forall \varphi \in L^{2} \left( 0, T ; \tilde{H}^{s}({\mathcal {D}})\right) , \end{aligned}$$

by passing \(n \longrightarrow \infty ,\) one can get

$$\begin{aligned} \int _{0}^{T} \int _{{\mathcal {D}}}\left[ \partial _{t}^{\alpha } u^{\star }+(-\Delta )^{s} u^{\star }\right] \varphi d x d t=\int _{0}^{T} \int _{{\mathcal {D}}} f^{\star } \varphi d x d t, \quad \forall \varphi \in L^{2}\left( 0, T ; \tilde{H}^{s}({\mathcal {D}})\right) . \end{aligned}$$

Following the same line as in [28], more precisely in proof of Theorem 2.1, to prove that \(u^{\star }\) coincides with \(u\left( f^{\star }\right) \) we will just have to show that \(u^{\star }(., 0)=u\left( f^{\star }\right) (., 0).\) From Lemma 2.2, the following integral hold

$$\begin{aligned} \int _{{\mathcal {D}}} \int _{0}^{T} \partial _{t}^{\alpha } u\left( f^{n}\right) \psi v ~\mathrm {d} t ~\mathrm {d} x= & {} -\int _{{\mathcal {D}}} u\left( f^{n}\right) (\cdot , 0) J_{T^{-}}^{1-\alpha } \psi (0) v ~\mathrm {d} x\\&-\int _{{\mathcal {D}}}\int _{0}^{T} u\left( f^{n}\right) \frac{\mathrm {d}}{\mathrm {d} t} J_{T^{-}}^{1-\alpha } \psi v ~\mathrm {d} t ~\mathrm {d} x, \end{aligned}$$

for all \(v \in L^{2}({\mathcal {D}})\) and \(\psi \in C^{1}[0, T]\) such that \(J_{T^{-}}^{1-\alpha } \psi (T)=0.\) Now, using the fact that \(u\left( f^{n}\right) (., 0)=\) in \({\mathcal {D}}\) and passing \(n \longrightarrow \infty \) in the previous equation, one can get

$$\begin{aligned} \int _{{\mathcal {D}}} \int _{0}^{T} \partial _{t}^{\alpha } u^{\star } \psi v ~\mathrm {d} t ~\mathrm {d} x=-\int _{{\mathcal {D}}} \int _{0}^{T} u^{\star } \frac{\mathrm {d}}{\mathrm {d} t} J_{T^{-}}^{1-\alpha } \psi v ~\mathrm {d} t ~\mathrm {d} x. \end{aligned}$$

On the other hand, we have

$$\begin{aligned} \int _{{\mathcal {D}}} \int _{0}^{T} \partial _{t}^{\alpha } u^{\star } \psi v ~\mathrm {d} t ~\mathrm {d} x=-\int _{{\mathcal {D}}} u^{\star }(\cdot , 0) J_{T^{-}}^{1-\alpha } \psi (0) v ~\mathrm {d} x-\int _{{\mathcal {D}}} \int _{0}^{T} u^{\star } \frac{\mathrm {d}}{\mathrm {d} t} J_{T^{-}}^{1-\alpha } \psi v ~\mathrm {d} t ~\mathrm {d} x, \end{aligned}$$

it implies that \(u^{\star }(\cdot , 0)=0\) in \({\mathcal {D}}\). Then, from the uniqueness of the weak solution for the forward problem (1)–(4) in Theorem 2.3 , one can check that \(u^{\star }\) coincides with the unique solution to (1)–(4) with spatial component in source term \(f=f^{\star },\) i.e. \(u^{\star }=u\left( f^{\star }\right) \).

1.4 Proof of Proposition 3.4

Thanks to Corollary 3.3 which guaranties the existence of \(u^\star \in {\mathcal {X}}^{\alpha , s}\left( 0, T; L^{2}({\mathcal {D}})\right) \) and a sub-sequence \(\{ h^n\}_{n \ge 1} \subset {\mathcal {X}}^{\alpha , s}\left( 0, T; L^{2}({\mathcal {D}})\right) \) satisfying

$$\begin{aligned} u(h^{n}) \rightharpoonup u^{\star }\; \; \text {in}\; \; {\mathcal {X}}^{\alpha , s} \left( 0, T; L^{2}({\mathcal {D}})\right) \; \; \text {as}\; \; n \longrightarrow \infty , \end{aligned}$$

where \(u(h^n)\) is the solution to the forward problem (1)–(4) with spatial component \(h^n\) in the source term. Now, by employing the semi-continuity of the \(L^2\)-norm, we get

$$\begin{aligned} \left\| u\left( h^{\star }\right) -{\mathcal {O}}^{\delta }\right\| _{L^{2} ((0, T)\times {\mathcal {S}})}^{2}\le & {} \liminf _{n \rightarrow \infty } \left\| u\left( h^{n}\right) -{\mathcal {O}}_{k}^{\delta }\right\| _{L^{2} ({\mathcal {S}}\times (0, T))}^{2} \; \; \text {and}\; \; \Vert h^{\star } \Vert _{L^{2}({\mathcal {D}})} \\\le & {} \liminf _{n \rightarrow \infty } \left\| h^n\right\| _{L^{2}({\mathcal {D}})}^{2}, \end{aligned}$$

it follows

$$\begin{aligned} {\mathcal {G}}(h^\star ) \le \liminf _{n \rightarrow \infty } \left\| u\left( h^{n}\right) -{\mathcal {O}}_{k}^{\delta }\right\| _{L^{2} ({\mathcal {S}}\times (0, T))}^{2} +\mu \liminf _{n \rightarrow \infty } \left\| h^n\right\| _{L^{2}({\mathcal {D}})}^{2}, \end{aligned}$$

which leads to

$$\begin{aligned} {\mathcal {G}}(h^\star ) \le \liminf _{n \rightarrow \infty } {\mathcal {G}}(h^n). \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

BenSaleh, M., Maatoug, H. Inverse source problem for a space-time fractional diffusion equation. Ricerche mat 73, 681–713 (2024). https://doi.org/10.1007/s11587-021-00632-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11587-021-00632-x

Keywords

Navigation