Skip to main content
Log in

Riemann problem for van der Waals reacting gases with dust particles

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

In this paper, we obtained the solutions of the Riemann problem for a quasilinear hyperbolic system with four equations characterizing one-dimensional planar and radially symmetric flow of van der Waals reacting gases with dust particles involving shock wave, simple wave and contact discontinuities without any restriction on the magnitude of initial states. This system is more complex due to the dust particles in van der Waals reacting gases, that is, typical irreversible exothermic reaction of real gases in the presence of dust particles. The generalised Riemann invariants are used to determine the necessary and sufficient condition for the uniqueness of solutions. The effects of non-idealness and dust particles on the compressive and rarefaction waves are also analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Chorin, A.J.: Random choice solution of hyperbolic systems. J. Comput. Phys. 22, 517–533 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  2. Glimm, J.: Solutions in the large for nonlinear hyperbolic systems of equations. Commun. Pure. Appl. Math. 18, 697–715 (1965)

    Article  MathSciNet  Google Scholar 

  3. Lax, P.D.: Hyperbolic system of conservation laws II. Commun. Pure Appl. Math. 10, 537–566 (1957)

    Article  MathSciNet  Google Scholar 

  4. Smoller, J.A.: On the solution of the Riemann problem with general step data for an extended class of hyperbolic systems. Mich. Math. J. 16, 201–210 (1969)

    Article  MathSciNet  Google Scholar 

  5. Liu, T.P.: The Riemann problem for general \(2\times 2\) conservation laws. Trans. Am. Math. Soc. 199, 89–112 (1974)

    ADS  Google Scholar 

  6. Godunov, S.K., Zabrodin, A.V., Ivanov, M.I., Kraiko, A.N., Prokopov, G.P.: Numerical solution of multidimensional problems of gas dynamics. Moscow (1976)

  7. Kuila, S., Sekhar, T.R.: Riemann solution for ideal isentropic magnetogasdynamics. Meccanica 49, 2453–2465 (2014)

    Article  MathSciNet  Google Scholar 

  8. Singh, R., Singh, L.P.: Solution of the Riemann problem in magnetogasdynamics. Int. J. Non-Linear Mech. 67, 326–330 (2014)

    Article  ADS  Google Scholar 

  9. Kuila, S., Sekhar, T.R.: Riemann solution for one dimensional non-ideal isentropic magnetogasdynamics. Comput. Appl. Math. 35, 119–133 (2016)

    Article  MathSciNet  Google Scholar 

  10. Ambika, K., Radha, R.: Riemann problem in non-ideal gas dynamics. Ind. J. Pure Appl. Math. 47, 501–521 (2016)

    Article  MathSciNet  Google Scholar 

  11. Gupta, R.K., Nath, T., Singh, L.P.: Solution of Riemann problem for dusty gas flow. Int. J. Non-Linear Mech. 82, 83–92 (2016)

    Article  ADS  Google Scholar 

  12. Miura, H., Glass, I.I.: On the passage of a shock wave through a dusty gas layer. Proc. R. Soc. Lond. 385, 85–105 (1983)

    ADS  CAS  Google Scholar 

  13. Sun, M.: The singular solutions to a nonsymmetric system of Keyfitz–Kranzer type with initial data of Riemann type. Math. Methods Appl. Sci. 43, 682–697 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  14. Sun, M.: Concentration and cavitation phenomena of Riemann solutions for the isentropic Euler system with the logarithmic equation of state. Nonlinear Anal. Real World Appl. 53, 103068 (2020)

    Article  MathSciNet  Google Scholar 

  15. Chaturvedi, R.K., Singh, L.P.: The phenomena of concentration and cavitation in the Riemann solution for the isentropic zero-pressure dusty gasdynamics. J. Math. Phys. 62, 033101 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  16. Conforto, F., Jannelli, A., Monaco, R., Ruggeri, T.: On the Riemann problem for a reacting mixture of gases. In: Waves and Stability in Continuous Media: Proceedings of the 12th Conference on WASCOM, pp. 122–132 (2004). https://doi.org/10.1142/5464

  17. Chauhan, A., Arora, R.: Solution of the Riemann problem for an ideal polytropic dusty gas in magnetogasdynamics. Zeitschrift für Naturforschung A 75, 511–522 (2020)

    Article  ADS  CAS  Google Scholar 

  18. Chaturvedi, R.K., Singh, L.P., Zeidan, D.: Delta shock wave solution of the Riemann problem for the non-homogeneous modified Chaplygin gas dynamics. J. Dyn. Differ. Equ. (2020). https://doi.org/10.1007/s10884-020-09914-8

    Article  Google Scholar 

  19. Zhang, Y., Sun, M.: Concentration phenomenon of Riemann solutions for the relativistic Euler equations with the extended Chaplygin gas. Acta Appl. Math. 170, 539–568 (2020)

    Article  MathSciNet  Google Scholar 

  20. Teng, Z.H., Chorin, A.J., Liu, T.P.: Riemann problems to reacting gas, with applications to transition. SIAM J. Appl. Math. 42, 964–981 (1982)

    Article  MathSciNet  Google Scholar 

  21. Chadha, M., Jena, J.: Self-similar solutions and converging shocks in a non-ideal gas with dust particles. Int. J. Non-Linear Mech. 65, 164–172 (2014)

    Article  ADS  Google Scholar 

  22. Godlewski, E., Raviart, P.A.: Numerical Approximations of Hyperbolic Systems of Conservation Laws. Springer, New York (1996)

    Book  Google Scholar 

  23. Ying, L., Wang, C.: The discontinuous initial value problem of a reacting gas flow system. Trans. Am. Math. Soc. 266, 361–387 (1981)

    Article  Google Scholar 

  24. Barenblatt, G., Chorin, A., Kast, A.: The influence of the flow of the reacting gas on the conditions for a thermal explosion. Proc. Natl. Acad. Sci. USA 94, 12762–12764 (1997)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Harle, C., Carey, G., Varghese, P.L.: Analysis of high speed non-equilibrium chemically reacting gas flows. Part II. A finite volume/finite element model and numerical studies. Int. J. Numer. Methods Fluids 32, 691–709 (2000)

    Article  ADS  CAS  Google Scholar 

  26. Singh, R., Jena, J.: Interaction of an acceleration wave with a strong shock in reacting polytropic gases. Appl. Math. Comput. 225, 638–644 (2013)

    MathSciNet  Google Scholar 

  27. Singh, R., Jena, J.: Evolution and interaction of a characteristic shock with an acceleration wave in a reacting gas. Lob. J. Math. 34, 248–255 (2013)

    MathSciNet  Google Scholar 

  28. Jena, J., Singh, R.: Existence of self-similar solutions in reacting gases. Shock Waves 24, 211–218 (2014)

    Article  ADS  Google Scholar 

  29. Shah, S., Singh, R.: Evolution of singular surface and interaction with a strong shock in reacting polytropic gases using Lie group theory. Int. J. Non-linear Mech. 116, 173–180 (2019)

    Article  ADS  Google Scholar 

  30. Shah, S., Singh, R.: On imploding strong shocks in non-ideal reacting gases with dust particles. J. Math. Phys. 61, 033506 (2020)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  31. Shah, S., Singh, R.: Collision of a steepened wave with a blast wave in dusty real reacting gases. Phys. Fluids 31, 076103 (2019)

    Article  ADS  Google Scholar 

  32. Shah, S., Singh, R.: Lie symmetries for analyzing interaction of a characteristic shock with a singular surface in a non-ideal reacting gas with dust particles. Math. Methods Appl. Sci. 44, 3804–3818 (2020)

    Article  MathSciNet  Google Scholar 

  33. Pandey, M., Sharma, V.D.: Interaction of a characteristic shock with a weak discontinuity in a non-ideal gas. Wave Motion 44, 346–354 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  34. Smoller, J.: Shock Wave and Reaction Diffusion Equations. Springer, New York (1983)

    Book  Google Scholar 

Download references

Acknowledgements

Research support from Ministry of Tribal Affairs, Government of India is gratefully acknowledged by the first author (LK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randheer Singh.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kipgen, L., Singh, R. Riemann problem for van der Waals reacting gases with dust particles. Ricerche mat 73, 965–988 (2024). https://doi.org/10.1007/s11587-021-00654-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11587-021-00654-5

Keywords

Mathematics Subject Classification

Navigation