Skip to main content
Log in

Disciplined quasiconvex programming

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

We present a composition rule involving quasiconvex functions that generalizes the classical composition rule for convex functions. This rule complements well-known rules for the curvature of quasiconvex functions under increasing functions and pointwise maximums. We refer to the class of optimization problems generated by these rules, along with a base set of quasiconvex and quasiconcave functions, as disciplined quasiconvex programs. Disciplined quasiconvex programming generalizes disciplined convex programming, the class of optimization problems targeted by most modern domain-specific languages for convex optimization. We describe an implementation of disciplined quasiconvex programming that makes it possible to specify and solve quasiconvex programs in CVXPY 1.0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. J. Control Decis. 5(1), 42–60 (2018)

    Article  MathSciNet  Google Scholar 

  2. Aho, A., Lam, M., Sethi, R., Ullman, J.: Compilers: Principles, Techniques, and Tools, 2nd edn. Addison-Wesley Longman Publishing Co., Inc, Boston (2006)

    MATH  Google Scholar 

  3. Arrow, K., Debreu, G.: Existence of an equilibrium for a competitive economy. Econometrica 22(3), 265–290 (1954)

    Article  MathSciNet  Google Scholar 

  4. Bector, C.: Programming problems with convex fractional functions. Oper. Res. 16, 383–391 (1968). https://doi.org/10.1287/opre.16.2.383

    Article  MathSciNet  MATH  Google Scholar 

  5. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, New York (2004)

    Book  Google Scholar 

  6. Bullo, F., Liberzon, D.: Quantized control via locational optimization. IEEE Trans. Autom. Control 51(1), 2–13 (2006)

    Article  MathSciNet  Google Scholar 

  7. Charnes, A., Cooper, W.: Programming with linear fractional functionals. Naval Res. Logist Q. 9, 181–186 (1962). https://doi.org/10.1002/nav.3800090303

    Article  MathSciNet  MATH  Google Scholar 

  8. Diamond, S., Boyd, S.: CVXPY: a python-embedded modeling language for convex optimization. J. Mach. Learn. Res. 17(83), 1–5 (2016)

    MathSciNet  MATH  Google Scholar 

  9. Eppstein, D.: Quasiconvex programming: combinatorial and computational. Geometry 52(287–331), 3 (2005)

    Google Scholar 

  10. Fenchel, W.: Convex cones, sets, and functions. Lecture Notes (1953)

  11. Fu, A., Narasimhan, B., Boyd, S.: CVXR: An R package for disciplined convex optimization. arXiv (2017)

  12. Grant, M., Boyd, S.: CVX: MATLAB software for disciplined convex programming, version 2.1. http://cvxr.com/cvx (2014)

  13. Grant, M., Boyd, S., Ye, Y.: Disciplined convex programming. In: Global Optimization, vol. 84, pp. 155–210. Springer, New York (2006). https://doi.org/10.1007/0-387-30528-9_7

  14. Greenberg, H., Pierskalla, W.: A review of quasi-convex functions. Oper. Res. 19(7), 1553–1570 (1971)

    Article  Google Scholar 

  15. Gu, K.: Designing stabilizing control of uncertain systems by quasiconvex optimization. IEEE Trans. Autom. Control 39(1), 127–131 (1994)

    Article  MathSciNet  Google Scholar 

  16. Guerraggio, A., Molho, E.: The origins of quasi-concavity: a development between mathematics and economics. Hist. Math. 31(1), 62–75 (2004)

    Article  MathSciNet  Google Scholar 

  17. Hazan, E., Levy, K., Shalev-Shwartz, S.: Beyond convexity: Stochastic quasi-convex optimization. In: Advances in Neural Information Processing Systems 28 (NeurIPS ’15), pp. 1594–1602 (2015)

  18. Kantrowitz, R., Neumann, M.: Optimization for products of concave functions. Rendiconti del Circolo Matematico di Palermo. Serie II 54(2), 291–302 (2005). https://doi.org/10.1007/BF02874642

    Article  MathSciNet  MATH  Google Scholar 

  19. Ke, Q., Kanade, T.: Uncertainty models in quasiconvex optimization for geometric reconstruction. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 1199–1205. IEEE (2006)

  20. Ke, Q., Kanade, T.: Quasiconvex optimization for robust geometric reconstruction. IEEE Trans. Pattern Anal. Mach. Intell. 29(10), 1834–1847 (2007)

    Article  Google Scholar 

  21. Kiwiel, K.: Convergence and efficiency of subgradient methods for quasiconvex minimization. Math. Program. 90(1), 1–25 (2001)

    Article  MathSciNet  Google Scholar 

  22. Konnov, I.: On convergence properties of a subgradient method. Optim. Methods Softw. 18(1), 53–62 (2003). https://doi.org/10.1080/1055678031000111236

    Article  MathSciNet  MATH  Google Scholar 

  23. Löfberg, J.: YALMIP: a toolbox for modeling and optimization in MATLAB. In: Proceedings of the CACSD Conference. Taipei, Taiwan (2004)

  24. Luenberger, D.: Quasi-convex programming. SIAM J. Appl. Math. 16, 1090–1095 (1968). https://doi.org/10.1137/0116088

    Article  MathSciNet  MATH  Google Scholar 

  25. Nikaidô, H.: On von Neumann’s minimax theorem. Pac. J. Math. 4, 65–72 (1954)

    Article  MathSciNet  Google Scholar 

  26. Schaible, S.: Analyse und Anwendungen von Quotientenprogrammen, Mathematical Systems in Economics, vol. 42. Verlag Anton Hain, Königstein/Ts. (1978). Ein Beitrag zur Planung mit Hilfe der nichtlinearen Programmierung

  27. Schaible, S.: Fractional programming: applications and algorithms. Eur. J. Oper. Res. 7(2), 111–120 (1981). https://doi.org/10.1016/0377-2217(81)90272-1

    Article  MathSciNet  MATH  Google Scholar 

  28. Seiler, P., Balas, G.: Quasiconvex sum-of-squares programming. In: 49th IEEE Conference on Decision and Control (CDC), pp. 3337–3342 (2010)

  29. Sou, K., Megretski, A., Daniel, L.: A quasi-convex optimization approach to parameterized model order reduction. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 27(3), 456–469 (2008)

    Article  Google Scholar 

  30. Udell, M., Mohan, K., Zeng, D., Hong, J., Diamond, S., Boyd, S.: Convex optimization in Julia. In: SC14 Workshop on High Performance Technical Computing in Dynamic Languages (2014)

Download references

Acknowledgements

The authors thank Steven Diamond for many useful discussions.

Funding

A. Agrawal is supported by a Stanford Graduate Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akshay Agrawal.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agrawal, A., Boyd, S. Disciplined quasiconvex programming. Optim Lett 14, 1643–1657 (2020). https://doi.org/10.1007/s11590-020-01561-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-020-01561-8

Keywords

Navigation