Skip to main content
Log in

Effects of N Doping on the Microstructures and Optical Properties of TiO2

  • Advanced materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

TiO2 nanopowders with different nitrogen (N) dopant concentrations were first synthesized by sol-gel method. XRD, TEM, HRTEM, XPS, UV-vis DRS were used to characterize the effects of N doping on the microstructures and optical properties of TiO2. The results indicated that the prepared TiO2 only contained anatase phase with a slight distortion, and the N doping improved the dispersity of TiO2. The N doping leaded to more defects in TiO2, capturing the charge carriers and inhibiting the combination of electrons and holes. Also, the N-doped TiO2 was composed of Ti, O and N. Further, N was doped into the TiO2 lattice by substituting for O, forming the oxidized nitrogen in the form of Ti–N–O or Ti–O–N bond, and Ti was present in the form of Ti4+ in TiO2. Finally, the absorbance of N-doped TiO2 was obviously improved in both UV and visible light region. Optical absorption edges of N-doped TiO2 samples showed obvious red shift, which expanded spectral absorption range of TiO2 and improved the utilization efficiency of visible light. It is concluded that N element was successfully doped into TiO2 crystal lattice, and the N dopant concentration of 3.0% was designed to modify TiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li H, Hao YB, Lu HQ. A Systematic Study on Visible–Light N–Doped TiO2 Photocatalyst Obtained from Ethylenediamine by Sol–Gel Method[J]. Appl. Surf. Sci., 2015, 344: 112–118

    Article  CAS  Google Scholar 

  2. Chen ML, Oh WC. The Improved Photocatalytic Properties of Methylene Blue for V2O3/CNT/TiO2 Composite under Visible Light[J]. Int. J. Photoenergy, 2010, 4: 424–448

    Google Scholar 

  3. Lv K, Xiang Q, Yu J. Effect of Calcination Temperature on Morphology and Photocatalytic Activity of Anatase TiO2 Nanosheets with Exposed(001) Facets[J]. Appl. Cataly. B, 2011, 104(3): 275–281

    Article  CAS  Google Scholar 

  4. Lu HQ, Yao JF. Recent Advances in Liquid–Phase Heterogeneous Photocatalysis for Organic Synthesis by Selective Oxidation[J]. Curr. Org. Chem., 2014, 18(10): 1 365–1 372

    Article  CAS  Google Scholar 

  5. Veluru JB, Appukuttan SN, Zhu PN. Synthesis and Characterization of Rice Grains Like Nitrogen–Doped TiO2 Nanostructures by Electrospinning–Photocatalysis[J]. Mater. Lett., 2011, 65(19–20): 3 064–3 068

    Google Scholar 

  6. Daghrir R, Drogui P, Robert D. Modified TiO2 for Environmental Photocatalytic Applications: a Review[J]. Ind. Eng. Chem. Res., 2013, 52(10): 3 581–3 590

    Article  CAS  Google Scholar 

  7. Macwan DP, Dave PN, Chaturvedi S. A Review on Nano–TiO2 Sol–Gel Type Syntheses and Its Applications[J]. J. Mater. Sci., 2011, 46(1): 3 669–3 686

    Article  CAS  Google Scholar 

  8. Cui XL, Li YG, Zhang QH. Silver Orthophosphate Immobilized on Flaky Layered Double Hydroxides As the Visible–Light–Driven Photocatalysts[ J]. Int. J. Photoenergy, 2012, 1110–662X: 1 302–1 312

    Google Scholar 

  9. Wang Y, He Y, Lai Q. Review of the Progress in Preparing Nano TiO2: An Important Environmental Engineering Material[J]. J. Envir. Sci., 2014, 26(11): 2 139–2 177

    Article  Google Scholar 

  10. Pang YL, Lim S, Ong HC. A Critical Review on the Recent Progress of Synthesizing Techniques and Fabrication of TiO2–Based Nanotubes Photocatalysts[J]. Appl. Catal. A–Gen., 2014, 481(25): 127–142

    Article  CAS  Google Scholar 

  11. Gu D, Zhu Y, Xu Z. Effects of Ion Doping on the Optical Properties of Dye–Sensitized Solar Cells[J]. Adv. Mater. Phys. Chem., 2014, 4(10): 187–193

    Article  Google Scholar 

  12. Banerjee AN. The Design, Fabrication, and Photocatalytic Utility of Nanostructured Semi–Conductors: Focus on TiO2–Based Nanostructures[ J]. Nanotech. Sci. Appl., 2011, 4: 35–65

    Article  CAS  Google Scholar 

  13. Silija P, Yaakob Z, Suraja V. An Enthusiastic Glance in to the Visible Responsive Photocatalysts for Energy Production and Pollutant Removal, with Special Emphasis on Titania[J]. Int. J. Photoenergy, 2012, 44(1): 90–99

    Google Scholar 

  14. Mallakpour S, Nikkhoo E. Surface Modification of Nano–TiO2 with Trimellitylimido–Amino Acid–Based Diacids for Preventing Aggregation of Nanoparticles[J]. Adv. Powder Technol., 2014, 25(1): 348–353

    Article  CAS  Google Scholar 

  15. Dong H, Zeng G, Tang L. An Overview on Limitations of TiO2–Based Particles for Photocatalytic Degradation of Organic Pollutants and the Corresponding Countermeasures[J]. Water Res., 2015, 79: 128–146

    Article  CAS  Google Scholar 

  16. Ohno T, Murakami N. Develpoment of Metal Cation Compound–Doped TiO2 Photocatalysts Having a Rutile Phase under Visible Light[J]. Appl. Catal. A–Gen., 2008, 349(1): 70–75

    Article  CAS  Google Scholar 

  17. Li FF, Jing YS, Xia MS. Effect of the P/Ti Ratio the Visible–Light Photocatalytic Activity of P–Doped TiO2[J]. J. Phys. Chem. C, 2009, 113(42):18 134–18 141

    Google Scholar 

  18. Fujishima A, Zhang X, Tryk DA. TiO2 Photocatalysis and Related Surface Phenomena[J]. Surf. Sci. Rep., 2009, 63(12): 515–582

    Article  CAS  Google Scholar 

  19. Gomathi Devi L, Kavitha R. A Review on Nonmetal Ion Doped Titania for the Photocatalytic Degradation of Organic Pollutants under UV/Solar Light: Role of Photogenerated Charge Carrier Dynamics in Enhancing the Activity[J]. Appl. Catal. B–Environ., 2013, s140–141(8): 559–587

    Google Scholar 

  20. Mamane H, Horovitz I, Lozzi L. The Role of Physical and Operational Parameters in Photocatalysis by N–Doped TiO2 Sol–Gel Thin Films[J]. Chem. Eng. J., 2014, 257(6): 159–169

    Article  CAS  Google Scholar 

  21. Yang G, Jiang Z, Shi H. Preparation of Highly Visible–Light Active N–Doped TiO2 Photocatalyst[J]. J. Mater. Chem., 2010, 20(25): 5 301–5 309

    Article  CAS  Google Scholar 

  22. Chen X, Mao SS. Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications[J]. Chem. Rev., 2007, 38(41): 2 891–2 959

    Article  CAS  Google Scholar 

  23. Jiang Z, Kong L, Alenazey FS. Enhanced Visible–Light–Driven Photocatalytic Activity of Mesoporous TiO2–xNx Derived from the Ethylenediamine–Based Complex[J]. Nanoscale, 2013, 5(12): 5 396–5 402

    Article  CAS  Google Scholar 

  24. Behnajady MA, Eskandarloo H, Modirshahla N. Investigation of the Effect of Sol–Gel Synthesis Variables on Structural and Photocatalytic Properties of TiO2 Nanoparticles[J]. Desalination, 2011, 278(1–3): 10–17

    Article  CAS  Google Scholar 

  25. Lee HU, Lee SC, Choi S. Efficient Visible–Light Induced Photocatalysis on Nanoporous Nitrogen–Doped Titanium Dioxide Catalysts[J]. Chem. Eng. J., 2013, 228(14): 756–764

    Article  CAS  Google Scholar 

  26. Todorova N, Vaimakis T, Petrakis D. N and N, S–Doped TiO2 Photocatalysts and Their Activity in NOx Oxidation[J]. Catal. Today, 2013, 209(12): 41–46

    Article  CAS  Google Scholar 

  27. Powell MJ, Dunnill CW, Parkin IP. N–Doped TiO2 Visible Light Photocatalyst Films via a Sol–Gel Route Using TMEDA As the Nitrogen Source[J]. J. Photochem. Photob. A: Chem., 2014, 281(5): 27–34

    Article  CAS  Google Scholar 

  28. Ramchiary A, Samdarshi SK. Hydrogenation Based Disorder–Engineered Visible Active N–Doped Mixed Phase Titania[J]. Solar Ener. Mater. Solar Cell, 2015, 134: 381–388

    Article  CAS  Google Scholar 

  29. Monteiro RAR, Miranda SM, Vilar VJP. N–Modified TiO2 Photocatalytic Activity Towards Diphenhydraminedegradation and Escherichia Coli Inactivation in Aqueous Solutions[J]. Appl. Catal. B–Envir., 2015, 162(6): 66–74

    Article  CAS  Google Scholar 

  30. Emeline AV, Sheremetyeva NV, Khomchenko NV. Photoinduced Formation of Defects and Nitrogen Stabilization of Color Centers in N–Doped Titanium Dioxide[J]. J. Phys. Chem. C, 2007, 111(30): 11 456–11 462

    Article  CAS  Google Scholar 

  31. Lee K, Kim D, Roy P. Anodic Formation of Thick Anatase TiO2 Mesosponge Layers for High–Efficiency Photocatalysis[J]. J. Am. Chem. Soc., 2010, 132(5): 1 478–1 489

    Article  CAS  Google Scholar 

  32. Pelaez M, Nolan NT, Pillai SC. A Review on the Visible Light Active Titanium Dioxide Photocatalysts for Environmental Applications[J]. Appl. Catal. B–Envir., 2012, 125(33): 331–349

    Article  CAS  Google Scholar 

  33. Dong F, Guo S, Wang H. Enhancement of the Visible Light Photocatalytic Activity of C–Doped TiO2 Nanomaterials Prepared by a Green Synthetic Approach[J]. J. Phys. Chem. C, 2014, 115(27): 13 285–13 292

    Article  CAS  Google Scholar 

  34. Leong KH, Monash P, Ibrahim S. Solar Photocatalytic Activity of Anatase TiO2 Nanocrystals Synthesized by Non–Hydrolitic Sol–Gel Method[J]. Solar Energy, 2014, 101(1): 321–332

    Article  CAS  Google Scholar 

  35. Aziz AA, Puma GL, Ibrahim S. Preparation, Characterisation and Solar Photoactivity of Titania Supported Strontium Ferrite Nanocomposite Photocatalyst[J]. J. Exp. Nanosci., 2013, 8(3): 295–310

    Article  CAS  Google Scholar 

  36. Ma W, Wang Q, Qin Z. Green Synthesis of Silver–Modified TiO2 Hollow Spheres and Their Visible Photocatalytic Performance[J]. J. Chen, J. Univer. Jinan, 2016, 30: 167–176

    CAS  Google Scholar 

  37. Ou HH, Luo SL, Liao CH. N–Doped TiO2 Prepared from Microwave–Assisted Titanate Nanotubes(NaxH2–xTi3O7): the Effect of Microwave Irradiation during TNT Synthesis on the Visible Light Photoactivity of N–Doped TiO2[J]. J. Phys. Chem. C, 2011, 115(10): 4 000–4 007

    Article  CAS  Google Scholar 

  38. Li H, Li J, Huo Y. Highly Active TiO2 N Photocatalysts Prepared by Treating TiO2 Precursors in NH3/Ethanol Fluid under Supercritical Conditions[J]. J. Phys. Chem. B, 2006,110(4): 1 559–1 565

    Google Scholar 

  39. Yang X, Cao C, Erickson L. Photo–Catalytic Degradation of Rhodamine B on C–, S–, N–, and Fe–Doped TiO2 under Visible Light Irradiation[J]. Appl. Catal. B–Envir., 2009, 91(3–4): 657–662

    Google Scholar 

  40. Emeline AV, Kuznetsov VN, Rybchuk VK. Visible–Light–Active Titania Photocatalysts: the Case of N–Doped TiO2–Properties and Some Fundamental Issues[J]. Int. J. Photoenergy, 2008, 4: 1–19

    Article  Google Scholar 

  41. Chen XB, Burda C. Photoelectron Spectroscopic Investigation of Nitrogen–Doped Titania Nanoparticles[J]. J. Phys. Chem. B, 2004, 108(40): 15 446–15 449

    Article  CAS  Google Scholar 

  42. Zhang J, Fu WJ, Xi J. N–doped Rutile TiO2 Nano–Rods Show Tunable Photocatalytic Selectivity[J]. J. Alloy. Compd., 2013, 575(20): 40–47

    Article  CAS  Google Scholar 

  43. Kuo C, Wu C, Wu J, et al. Synthesis and Characterization of a Phosphorus–Doped TiO2 Immobilized Bed for the Photodegradation of Bisphenol A under UV and Sunlight Irradiation[J]. Reac. Kinet. Mech. Cat., 2015, 114(2): 753–766

    Article  CAS  Google Scholar 

  44. Pan H, Zhang YW, Shenoy VB. Effects of H–, N–, and(H, N)–Doping on the Photocatalytic Activity of TiO2[J]. J. Phys. Chem. C, 2011, 115(24): 12 224–12 231

    Article  CAS  Google Scholar 

  45. Asahi R, Morikawa T, Ohwaki T. Visible–Light Photocatalysis in Nitrogen–Doped Titanium Oxides[J]. Science, 2001, 293(5528): 269–271

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to thank Advanced Analysis & Testing Center of Nanjing Forestry University for the assistance in experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Xu  (许涛).

Additional information

Funded by National Natural Science Foundation of China (No. 51378264), Open Research Fund of National Engineering Laboratory for Advanced Road Materials (No. NLARMORF- 2018-02) and Provincial Six Talent Peaks Project in Jiangsu, China (No. JNHB-050)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, T., Wang, M. & Wang, T. Effects of N Doping on the Microstructures and Optical Properties of TiO2. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 34, 55–63 (2019). https://doi.org/10.1007/s11595-019-2014-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-019-2014-1

Key words

Navigation