Skip to main content
Log in

Luminescent BODIPY-based Porous Organic Polymer for CO2 Adsorption

  • Organic materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Luminescent porous materials have shown various applications such as electronic devices, gas adsorption, energy materials and photocatalysis. Consequently, we designed and prepared a new type borondipyrromethene (BODIPY) based porous organic polymer (POP) by using Sonogashira coupling reaction. This POP-1 exhibits high thermal stability with moderate surface area. In addition, POP-1 is highly emissive in a solid state. Due to enrichment of different kinds of heteroatoms in the skeleton of the porous polymer, POP-1 selectively captures carbon dioxide (CO2) with relative high adsorption selectivity of CO2/N2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. (a) Zhang YG, Riduan SN. Functional Porous Organic Polymers for Heterogeneous Catalysis[J]. Chem. Soc. Rev., 2012, 41(6): 2 083–2 094

    Article  Google Scholar 

  2. Sun Q, Dai ZF, Meng XJ, et al. Porous Polymer Catalysts with Hierarchical Structures[J]. Chem. Soc. Rev., 2015, 44(17): 6 018–6 034

    Article  Google Scholar 

  3. (a) Bae YSQ, Snurr R. Development and Evaluation of Porous Materials for Carbon Dioxide Separation and Capture[J]. Angew. Chem. Int. Ed., 2011, 50(49): 11 586–11 596

    Article  Google Scholar 

  4. Dawson R, Stöckel E, Holst JR, et al. Microporous Organic Polymers for Carbon Dioxide Capture[J]. Ener. Environ. Sci., 2011, 4(10): 4 239–4 245

    Article  Google Scholar 

  5. Rabbani MG, El–Kaderi HM. Synthesis and Characterization of Porous Benzimidazole Linked Polymers and Their Performance in Small Gas Storage and Selective Uptake[J]. Chem. Mater., 2012, 24(8): 1 511–1 517

    Article  Google Scholar 

  6. Jiang MY, Wang Q, Chen Q, et al. Preparation and Gas Uptake of Microporous Organic Polymers based on Binaphthalene Containing Spirocyclic tetraether[J]. Polymer, 2013, 54, 2 952–2 957

    Google Scholar 

  7. (a) Zhao YC, Wang T, Zhang LM, et al. Microporous Spiro–centered Poly(benzimidazole) Net Works: Preparation, Characterization and Gas Sorption Properties[J]. Polym. Chem., 2015, 6(5): 748–753

    Article  Google Scholar 

  8. Zhu Y, Long H, Zhang W. Imine–linked Porous Polymer Frameworks with High Small Gas (H2, CO2, CH4, C2H2) Uptake and CO2/N2Selectivity[ J]. Chem. Mater., 2013, 25 (9): 1 630–1 635

    Google Scholar 

  9. Wang T, Zhao YC, Luo M, et al. Facile One Pot Synthesis of Glycoluril–based Porous Organic Polymers[J]. Polymer, 2015, 60, 26–31

    Article  Google Scholar 

  10. (a) Zhang Y, Shen X, Feng X, et al. Covalent Organic Frameworks as pH Responsive Signaling Scaffolds[J]. Chem. Commun., 2016, 52, 11 088–11 091

    Google Scholar 

  11. Qiu F, Zhao W, Han S, et al. Recent Advances in Boron Cotaining Conjugated Porous Polymer[J]. Polymers, 2016, 8(5): 1–21

    Article  Google Scholar 

  12. (a) Yan Z, Yuan Y, Tian Y, et al. Highly Efficient Enrichment of Volatile Iodine by Charged Porous Aromatic Frameworks with Three Sorption Sites[J]. Angew. Chem. Int. Ed., 2015, 54(43): 12 733–12 737

    Article  Google Scholar 

  13. Li A, Lu RF, Wang Y, et al. Lithium Doped Conjugated Microporous Polymers for Reversible Hydrogen Storage [J]. Angew. Chem. Int. Ed., 2010, 49(19): 3330–3 333

    Article  Google Scholar 

  14. (a) Jiang JX, Su F, Niu H, et al. Conjugated Microporous Poly (phenylene butadiynylene) [J]. Chem. Commun., 2008, 8(4): 486–488

    Article  Google Scholar 

  15. Cheng G, Hasell T, Trewin A, et al. Soluble Conjugated Microporous Polymers[J]. Angew. Chem. Int. Ed., 2012, 51(51): 12 727–12 731

    Article  Google Scholar 

  16. Chen Q, Luo M, Wang T, et al. Porous Organic Polymers Based on Propeller–Like Hexaphenylbenzene Building Units[J]. Macromolecules, 2011, 44(14): 5 573–5 577

    Article  Google Scholar 

  17. (a) Liu X, Xu Y, Jiang D, Conjugated Microporous Polymers as Molecular Sensing Devices: Microporous Architecture Enables Rapid Response and Enhances Sensitivity in Fluorescence on and Fluorescence off Sensing[J]. J. Am. Chem. Soc., 2012, 134 (21): 8 738–8 741

    Google Scholar 

  18. Novotney JL, Dichtel WR. Conjugated Porous Polymers for TNT Vapor Detection[J]. ACS. Macro. Lett., 2013, 2(5): 423–426

    Article  Google Scholar 

  19. Gopalakrishnan D, Dichtel WR. Direct Detection of RDX Vapor Using a Conjugated Polymer Network[J]. J. Am. Chem. Soc., 2013, 135 (22): 8 357–8 362

    Article  Google Scholar 

  20. Tan H, Liu B, Chen Y. Lanthanide Coordination Polymer Nanoparticles for Sensing of Mercury (II) by Photo Induced Electron Transfer[J]. ACS. Nano., 2012, 6(12): 10 505–10 511

    Article  Google Scholar 

  21. Gu C, Huang N, Wu Y, et al. Design of Highly Photofunctional Porous Polymer Films with Controlled Thickness and Prominent Microporosity[ J]. Angew. Chem. Int. Ed., 2015, 54(39): 11 540–11 544

    Article  Google Scholar 

  22. Xu Y, Chen L, Guo Z, et al. Light Emitting Conjugated Polymers with Microporous Network Architecture: Interweaving Scaffold Promotes Electronic Conjugation, Facilitates Exciton Migration, and Improves Luminescence[J]. J. Am. Chem. Soc., 2011, 133 (44): 17 622–17 625

    Google Scholar 

  23. (a) Totten RK, Kim YS, Weston MH, et al. Enhanced Catalytic Activity Through the Tuning of Micropore Environment and Supercritical CO2Processing: Al (Porphyrin)–Based Porous Organic Polymers for the Degradation of a Nerve Agent Simulant[J]. J. Am. Chem. Soc., 2013, 135(32): 11 720–11 723

    Article  Google Scholar 

  24. Zhang K, Farha OK, Hupp JT, et al. Complete Double Epoxidation of Divinylbenzene Using Mn(porphyrin)–Based Porous Organic Polymers[J]. ACS. Catal., 2015, 5(8): 4 859–4 866

    Article  Google Scholar 

  25. Spitler EL, Dichtel WR. Lewis Acid Catalysed Formation of Two Dimensional Phthalocyanine Covalent Organic Frameworks[J]. Nat. Chem., 2010, 2(8): 672–677

    Article  Google Scholar 

  26. Dalapati S, Jin E, Addicoat M, et al. Highly Emissive Covalent Organic Frameworks[J]. J. Am. Chem. Soc., 2016, 138(18): 5 797–5 800

    Article  Google Scholar 

  27. Lin G, Cao D. Color Tunable Porous Organic Polymer Luminescent Probes for Selective Sensing of Metal Ions and Nitro Aromatic Explosives[ J]. J. Mater. Chem. C, 2015, 3(33): 8 490–8 494

    Article  Google Scholar 

  28. Bonillo B, Sprick, RS, Cooper AI. Tuning Photophysical Properties in Conjugated Microporous Polymers by Comonomer Doping Strategies[ J]. Chem. Mater., 2016, 28(10): 3 469–3 480

    Article  Google Scholar 

  29. Liao Y, Weber J, Faul CFJ. Fluorescent Microporous Polyimides Based on Perylene and Triazine for Highly CO2Selective Carbon Materials[ J]. Macromolecules, 2015, 48(7): 2 064–2 073

    Article  Google Scholar 

  30. Tobin JM, Liu J, Hayes, H, et al. BODIPY–based Conjugated Microporous Polymers as Reusable Heterogeneous Photosensitisers in a Photochemical Flow Reactor[J]. Polym. Chem., 2016, 7(43), 6 662–6 670

    Google Scholar 

  31. Zhuang XD, Gehrig D, Forler N, et al. Conjugated Microporous Polymers with Dimensionality Controlled Heterostructures for Green Energy Devices[J]. Adv. Mater., 2015, 27(25): 3 789–3 796

    Article  Google Scholar 

  32. Liras M, Iglesias M, Sánchez F. Conjugated Microporous Polymers Incorporating BODIPY Moieties as Light Emitting Materials and Recyclable Visible Light Photocatalysts[J]. Macromolecules, 2016, 49(5): 1 666–1 673

    Article  Google Scholar 

  33. Yogo T, Urano Y, Ishitsuka Y, et al. Highly Efficient and Photostable Photosensitizer Based on BODIPY Chromophore[J]. J. Am. Chem. Soc., 2005, 127(35): 12 162–12 163

    Article  Google Scholar 

  34. (a) Baruah M, Qin W, Vallée RA, et al. Highly Potassium Selective Ratiometric Fluorescent Indicator Based on BODIPY Azacrown Ether Excitable with Visible Light[J]. Org. Lett., 2005, 7(20): 4 377–4 380

    Article  Google Scholar 

  35. Thivierge C, Bandichhor AR, Burgess K. Spectral Dispersion and Water Solubilization of (BODIPY) Dyes via Palladium Catalyzed C–H Functionalization[J]. Org. Lett., 2007, 9(11): 2 135–2 138

    Article  Google Scholar 

  36. Jiao L, Pang W, Zhou J, et al. Regioselective Stepwise Bromination of Boron Dipyrromethene (BODIPY) Dyes[J]. J. Org. Chem., 2011, 76(24): 9 988–9 996

    Article  Google Scholar 

  37. (a) Wang DG, Li Q, Zhu YL, et al. BODIPY–Based Porous Organic Polymers: How the Monomeric Methyl Substituents and Isomerization Affect the Porosity and Singlet Oxygen Generation[J]. Macromol. Chem. Phys., 2017, DOI: 10.1002/macp.201700101

    Google Scholar 

  38. Wang DG, Song F, Tang H, J et al. A Facile Route by Using FeCl3 to Prepare Dimeric BODIPY Based Porous Organic Polymers[J]. New J. Chem., 2017, DOI: 10.1039/C7NJ01005B

    Google Scholar 

  39. Basak D, Christensen S, Surampudi SK, et al. Proton Conduction in Discoticmesogens[J]. Chem. Commun., 2011, 47(19): 5 566–5 568

    Article  Google Scholar 

  40. Deniz E, Battal M, Cusido J, et al. Insights into Theisomerization of Photochromic Oxazines from Theexcitation Dynamics of BODIPY–oxazine Dyes[J]. Phys. Chem. Chem. Phys., 2012, 14(14): 10 300–10 307

    Article  Google Scholar 

  41. Jiang JX, Su F, Trewin A, et al. Conjugated Microporous Poly(aryleneethynylene) Networks[J]. Angew. Chem. Int. Ed., 2007, 46(45): 8 574–8 578

    Article  Google Scholar 

  42. Patel HA, Je SH, Park J, et al. Unprecedented High Temperature CO2 Selectivity in N2 Phobic Nanoporous Covalent Organic Polymers[J]. Nat. Commun., 2013, 4(1): 1 357–1 360

    Article  Google Scholar 

  43. Sunahara H, Urano Y, Kojima AH, et al. Designand Synthesis of a Library of BODIPY Based Environmental Polarity Sensors Utilizing Photoinduced Electron–Transfer–Controlled Fluorescence ON/OFF Switching[J]. J. Am. Chem. Soc., 2007, 129(17): 5 597–5 604

    Article  Google Scholar 

  44. Rabbani MG, Elkaderi HM. Template Free Synthesis of a Highly Porous Benzimidazole Linked Polymer for CO2 Capture and H2 Storage[ J]. Chem. Mater., 2011, 23(7): 1 650–1 653

    Article  Google Scholar 

  45. Yuan R, Ren H, Yan Z, et al. Robusttri(4–ethynylphenyl)amine Based Porousaromatic Frameworks for Carbon Dioxide Capture[J]. Polym. Chem., 2014, 5(7): 2 266–2 272

    Article  Google Scholar 

  46. (a) Zhao W, Zhuang X, Wu D, et al. Boron–p–nitrogen–Based Conjugated Porous Polymers with Multifunctions[J]. J. Mater. Chem. A, 2013, 1(44): 13878–13884

    Article  Google Scholar 

  47. Saleh M, Baek SB, Han ML, et al. Triazine Based Microporous Polymers for Selective Adsorption of CO2[J]. J. Am. Chem. Soc., 2015, 119(10): 5 395–5 399

    Google Scholar 

  48. (a) Zhang C, Zhu PC, Tan L, et al. Triptycene Based Hyper Crosslinked Polymer Sponge for Gas Storage and Water Treatment[J]. Macromolecules, 2015, 48(23): 8 509–8 514

    Article  Google Scholar 

  49. Arab P, Parrish E, İslamoğ luT, et al. Synthesis and Evaluation of Porous Azo–linked Polymers for Carbon Dioxide Capture and Separation, [J]. J. Mater. Chem. A, 2015, 3(41): 20 586–20 594

    Article  Google Scholar 

  50. (a) Jiang X, Zhao W, Wang W, et al. One Potapproach to Pd Loaded Porous Polymers with Properties Tunable by the Oxidation State of the Phosphorus Core[J]. Polym. Chem., 2015,6(35): 6 351–6 357

    Google Scholar 

  51. Li G, Zhang B, Wang Z. Facile Synthesis of Fluorinated Microporous Polyaminals for Adsorption of Carbon Dioxide and Selectivities over Nitrogen and Methane[J]. Macromolecules, 2016, 49(7): 2 575–2 581

    Article  Google Scholar 

  52. (a) Ji G, Yang Z, Zhang H, et al. Hierarchically Mesoporous o–Hydroxyazobenzene Polymers: Synthesis and Their Applications in CO2 Capture and Conversion[J]. Angew. Chem. Int. Ed., 2016, 55(33): 9 685–9 689

    Article  Google Scholar 

  53. Ding X, Han BH. Copper Phthalocyanine Based CMPs with Various Internal Structures and Functionalities[J]. Chem. Commun., 2015, 51(64): 12 783–12 786

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunyue Pan  (潘春跃) or Guichao Kuang  (旷桂超).

Additional information

Funded by the Natural Science Foundation of China (Nos.21674129 and 21376272) and the Post-doctor Foundation of Central South University (No.140050292)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y., Yin, J., Li, X. et al. Luminescent BODIPY-based Porous Organic Polymer for CO2 Adsorption. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 34, 440–445 (2019). https://doi.org/10.1007/s11595-019-2071-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-019-2071-5

Key words

Navigation