Skip to main content

Advertisement

Log in

Clinical use of cardiac PET/MRI: current state-of-the-art and potential future applications

  • Review
  • Published:
Japanese Journal of Radiology Aims and scope Submit manuscript

Abstract

Combined PET/MRI is a novel imaging method integrating the advances of functional and morphological MR imaging with PET applications that include assessment of myocardial viability, perfusion, metabolism of inflammatory tissue and tumors, as well as amyloid deposition imaging. As such, PET/MRI is a promising tool to detect and characterize ischemic and non-ischemic cardiomyopathies. To date, the greatest benefit may be expected for diagnostic evaluation of systemic diseases and cardiac masses that remain unclear in cardiac MRI, as well as for clinical and scientific studies in the setting of ischemic cardiomyopathies. Diagnosis and therapeutic monitoring of cardiac sarcoidosis has the potential of a possible ‘killer-application’ for combined cardiac PET/MRI. In this article, we review the current evidence and discuss current and potential future applications of cardiac PET/MRI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bailey DL, Pichler BJ, Gückel B, Barthel H, Beer AJ, Botnar R, et al. Combined PET/MRI: from status quo to status go. Summary report of the fifth international workshop on PET/MR imaging; February 15–19, 2016; Tübingen, Germany. Mol Imaging Biol. 2016;18:637–50.

    Google Scholar 

  2. Gaertner FC, Furst S, Schwaiger M. PET/MR: a paradigm shift. Cancer Imaging. 2013;13:36–52.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Vontobel J, Liga R, Possner M, Clerc OF, Mikulicic F, Veit-Haibach P, et al. MR-based attenuation correction for cardiac FDG PET on a hybrid PET/MRI scanner: comparison with standard CT attenuation correction. Eur J Nucl Med Mol Imaging. 2015;42:1574–80.

    Article  PubMed  Google Scholar 

  4. Acampa W, Gaemperli O, Gimelli A, Knaapen P, Schindler TH, Verberne HJ, et al. Role of risk stratification by SPECT, PET, and hybrid imaging in guiding management of stable patients with ischaemic heart disease: expert panel of the EANM cardiovascular committee and EACVI. Eur Heart J Cardiovasc Imaging. 2015;16:1289–98.

    Article  PubMed  Google Scholar 

  5. Achenbach S, Barkhausen J, Beer M, Beerbaum P, Dill T, Eichhorn J, et al. Consensus recommendations of the German Radiology Society (DRG), the German Cardiac Society (DGK) and the German Society for Pediatric Cardiology (DGPK) on the use of cardiac imaging with computed tomography and magnetic resonance imaging. Fortschr Röntgenstr. 2012;184:345–68.

    Article  CAS  Google Scholar 

  6. Wintersperger BJ, Bamberg F, De Cecco CN. Cardiovascular imaging: the past and the future, perspectives in computed tomography and magnetic resonance imaging. Invest Radiol. 2015;50:557–70.

    Article  PubMed  Google Scholar 

  7. Petibon Y, Guehl NJ, Reese TG, Ebrahimi B, Normandin MD, Shoup TM, et al. Impact of motion and partial volume effects correction on PET myocardial perfusion imaging using simultaneous PET-MR. Phys Med Biol. 2017;62:326–43.

    Article  PubMed  Google Scholar 

  8. Kolbitsch C, Ahlman MA, Davies-Venn C, Evers R, Hansen M, Peressutti D, et al. Cardiac and respiratory motion correction for simultaneous cardiac PET-MR. J Nucl Med. 2017;58:846–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Bravo PE, Chien D, Javadi M, Merrill J, Bengel FM. Reference ranges for LVEF and LV volumes from electrocardiographically gated 82Rb cardiac PET/CT using commercially available software. J Nucl Med. 2010;51:898–905.

    Article  PubMed  Google Scholar 

  10. Gatidis S, Würslin C, Seith F, Schäfer JF, la Fougère C, Nikolaou K, et al. Towards tracer dose reduction in PET studies: simulation of dose reduction by retrospective randomized undersampling of list-mode data. Hell J Nucl Med. 2016;19:15–8.

    PubMed  Google Scholar 

  11. Nekolla SG, Martinez-Moeller A, Saraste A. PET and MRI in cardiac imaging: from validation studies to integrated applications. Eur J Nucl Med Mol Imaging. 2009;36:121–30.

    Article  Google Scholar 

  12. Mäkelä T, Clarysse P, Sipilä O, Pauna N, Pham QC, Katila T, et al. A review of cardiac image registration methods. IEEE Trans Med Imaging. 2002;21:1011–21.

    Article  PubMed  Google Scholar 

  13. Rischpler C, Nekolla SG. PET/MRI for cardiac imaging: possibilities and limits. Radiologe. 2013;53:691–8.

    Article  CAS  PubMed  Google Scholar 

  14. Fukushima K, Javadi MS, Higuchi T, Lautamäki R, Merrill J, Nekolla SG, et al. Prediction of short-term cardiovascular events using quantification of global myocardial flow reserve in patients referred for clinical 82Rb PET perfusion imaging. J Nucl Med. 2011;52:726–32.

    Article  PubMed  Google Scholar 

  15. Rischpler C, Nekolla SG, Dregely I, Schwaiger M. Hybrid PET/MR imaging of the heart: potential, initial experiences, and future prospects. J Nucl Med. 2013;54:402–15.

    Article  CAS  PubMed  Google Scholar 

  16. Ritter CO, del Savio K, Brackertz A, Beer M, Hahn D, Köstler H. High-resolution MRI for the quantitative evaluation of subendocardial and subepicardial perfusion under pharmacological stress and at rest. Fortschr Röntgenstr. 2007;179:945–52.

    Article  CAS  Google Scholar 

  17. Su M-YM, Yang K-C, Wu C-C, Wu Y-W, Yu H-Y, Tseng R-Y, et al. First-pass myocardial perfusion cardiovascular magnetic resonance at 3 Tesla. J Cardiovasc Magn Reson. 2007;9:633–44.

  18. Coelho-Filho OR, Seabra LF, Mongeon F-P, Abdullah SM, Francis SA, Blankstein R, et al. Stress myocardial perfusion imaging by CMR provides strong prognostic value to cardiac events regardless of patient’s sex. J Am Coll Cardiol Img. 2011;4:850–61.

  19. Montalescot G, Sechtem U, Achenbach S, Andreotti F, Arden C, Budaj A, et al. ESC guidelines on the management of stable coronary artery disease. Eur Heart J. 2013;34:2949–3003.

    Article  PubMed  Google Scholar 

  20. Klumpp B, Seeger A, Bretschneider C, Mangold S, Krumm P, Miller S, et al. Is myocardial stress perfusion MR-imaging suitable to predict the long term clinical outcome after revascularization? Eur J Radiol. 2013;82:1776–82.

    Article  CAS  PubMed  Google Scholar 

  21. Vincenti G, Masci PG, Monney P, Rutz T, Hugelshofer S, Gaxherri M, et al. Stress perfusion CMR in patients with known and suspected CAD: prognostic value and optimal ischemic threshold for revascularization. J Am Coll Cardiol Imaging. 2017;10:526–37.

    Article  Google Scholar 

  22. Gupta A, Taqueti VR, van de Hoef TP, Bajaj NS, Bravo PE, Murthy VL, et al. Integrated noninvasive physiological assessment of coronary circulatory function and impact on cardiovascular mortality in patients with stable coronary artery disease. Circulation. 2017;136:2325–36.

    Article  PubMed  Google Scholar 

  23. Valenta I, Antoniou A, Marashdeh W, Leucker T, Kasper E, Jones SR, et al. PET-measured longitudinal flow gradient correlates with invasive fractional flow reserve in CAD patients. Eur Heart J Cardiovasc Imaging. 2017;18:538–48.

    PubMed  Google Scholar 

  24. Bengel FM, Higuchi T, Javadi MS, Lautamäki R. Cardiac positron emission tomography. J Am Coll Cardiol. 2009;54:1–15.

    Article  PubMed  Google Scholar 

  25. Salgado-Garcia C, Jimenez-Heffernan A, Ramos-Font C, Lopez-Martin J, Sanchez-de-Mora E, Aroui T, et al. Safety of regadenoson in patients with severe chronic obstructive pulmonary disease. Rev Esp Med Nucl Imagen Mol. 2016;35:283–6.

    CAS  PubMed  Google Scholar 

  26. Rischpler C, Nekolla SG. PET/MR imaging in heart disease. PET Clin. 2016;11:465–77.

    Article  PubMed  Google Scholar 

  27. Rischpler C, Park M-J, Fung GSK, Javadi M, Tsui BMW, Higuchi T. Advances in PET myocardial perfusion imaging: F-18 labeled tracers. Ann Nucl Med. 2012;26:1–6.

    Article  PubMed  Google Scholar 

  28. Nensa F, Schlosser T. Cardiovascular hybrid imaging using PET/MRI. Fortschr Röntgenstr. 2014;186:1094–101.

    Article  Google Scholar 

  29. Nensa F, Poeppel T, Tezgah E, Heusch P, Nassenstein K, Mahabadi AA, et al. Integrated FDG PET/MR imaging for the assessment of myocardial salvage in reperfused acute myocardial infarction. Radiology. 2015;276:400–7.

    Article  PubMed  Google Scholar 

  30. Knuuti MJ, Yki-Järvinen H, Voipio-Pulkki LM, Mäki M, Ruotsalainen U, Härkönen R, et al. Enhancement of myocardial [fluorine-18]fluorodeoxyglucose uptake by a nicotinic acid derivative. J Nucl Med. 1994;35:989–98.

    CAS  PubMed  Google Scholar 

  31. Klumpp BD, Seeger A, Doesch C, Doering J, Hoevelborn T, Kramer U, et al. High resolution myocardial magnetic resonance stress perfusion imaging at 3 T using a 1 M contrast agent. Eur Radiol. 2010;20:533–41.

    Article  PubMed  Google Scholar 

  32. Nordenskjöld AM, Hammar P, Ahlström H, Bjerner T, Duvernoy O, Eggers KM, et al. Unrecognized myocardial infarction assessed by cardiac magnetic resonance imaging-prognostic implications. PLoS One. 2016;11:1–12.

    Article  CAS  Google Scholar 

  33. Seeger A, Grimm F, Fenchel M, Kramer U, Döring JS, Klumpp B, et al. Cardiac MRI in addition to MR angiography: a longitudinal study in vascular risk patients. Fortschr Röntgenstr. 2008;180:423–9.

    Article  CAS  Google Scholar 

  34. Krumm P, Zitzelsberger T, Weinmann M, Mangold S, Rath D, Nikolaou K, et al. Cardiac MRI left ventricular global function index and quantitative late gadolinium enhancement in unrecognized myocardial infarction. Eur J Radiol. 2017;92:11–6.

    Article  PubMed  Google Scholar 

  35. Greil GF, Seeger A, Miller S, Claussen CD, Hofbeck M, Botnar RM, et al. Coronary magnetic resonance angiography and vessel wall imaging in children with Kawasaki disease. Pediatr Radiol. 2007;37:666–73.

    Article  PubMed  Google Scholar 

  36. Prakken NH, Cramer MJ, Olimulder MA, Agostoni P, Mali WP, Velthuis BK. Screening for proximal coronary artery anomalies with 3-dimensional MR coronary angiography. Int J Cardiovasc Imaging. 2010;26:701–10.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Mangold S, Kramer U, Franzen E, Erz G, Bretschneider C, Seeger A, et al. Detection of cardiovascular disease in elite athletes using cardiac magnetic resonance imaging. Fortschr Röntgenstr. 2013;185:1167–74.

    Article  CAS  Google Scholar 

  38. Scherer DJ, Psalti PJ. Future imaging of atherosclerosis: molecular imaging of coronary atherosclerosis with 18F positron emission tomography. Cardiovasc Diagn Ther. 2016;6:354–67.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Dweck MR, Chow MWL, Joshi NV, Williams MC, Jones C, Fletcher AM, et al. Coronary arterial 18F-sodium fluoride uptake: a novel marker of plaque biology. J Am Coll Cardiol. 2012;59:1539–48.

    Article  CAS  PubMed  Google Scholar 

  40. Hoshi T, Sato A, Akiyama D, Hiraya D, Sakai S, Shindo M, et al. Coronary high-intensity plaque on T1-weighted magnetic resonance imaging and its association with myocardial injury after percutaneous coronary intervention. Eur Heart J. 2015;36:1913–22.

    Article  CAS  PubMed  Google Scholar 

  41. Bigalke B, Phinikaridou A, Andia ME, Cooper MS, Schuster A, Schönberger T, et al. Positron emission tomography/computed tomographic and magnetic resonance imaging in a murine model of progressive atherosclerosis using 64Cu-labeled glycoprotein VI-Fc. Circ Cardiovasc Imaging. 2013;6:957–64.

    Article  PubMed  Google Scholar 

  42. Noguchi T, Kawasaki T, Tanaka A, Yasuda S, Goto Y, Ishihara M, et al. High-intensity signals in coronary plaques on noncontrast T1-weighted magnetic resonance imaging as a novel determinant of coronary events. J Am Coll Cardiol. 2014;63:989–99.

    Article  PubMed  Google Scholar 

  43. Sciagrà R, Passeri A, Bucerius J, Verberne HJ, Slart RHJA, Lindner O, et al. Clinical use of quantitative cardiac perfusion PET: rationale, modalities and possible indications. Position paper of the Cardiovascular Committee of the European Association of Nuclear Medicine (EANM). Eur J Nucl Med Mol Imaging. 2016;43:1530–45.

    Article  PubMed  Google Scholar 

  44. Yoon YE, Kitagawa K, Kato S, Nakajima H, Kurita T, Ito M, et al. Prognostic significance of unrecognized myocardial infarction detected with MR imaging in patients with impaired fasting glucose compared with those with diabetes. Radiology. 2012;262:807–15.

    Article  PubMed  Google Scholar 

  45. Hunold P, Brandt-Mainz K, Freudenberg L, Vogt FM, Neumann T, Knipp S, et al. Evaluation of myocardial viability with contrast-enhanced magnetic resonance imaging-comparison of the late enhancement technique with positron emission tomography. Fortschr Röntgenstr. 2002;174:867–73.

    Article  CAS  Google Scholar 

  46. Groth M, Muellerleile K, Klink T, Säring D, Halaj S, Folwarski G, et al. Improved agreement between experienced and inexperienced observers using a standardized evaluation protocol for cardiac volumetry and infarct size measurement. Fortschr Röntgenstr. 2012;184:1131–7.

    Article  CAS  Google Scholar 

  47. Puymirat E, Caudron J, Steg PG, Lemesle G, Cottin Y, Coste P, et al. Prognostic impact of non-compliance with guidelines-recommended times to reperfusion therapy in ST-elevation myocardial infarction. The FAST-MI 2010 registry. Eur Heart J Acute Cardiovasc Care. 2017;6:26–33.

    Article  Google Scholar 

  48. Nilsson L, Szymanowski A, Swahn E, Jonasson L. Soluble TNF receptors are associated with infarct size and ventricular dysfunction in ST-elevation myocardial infarction. PLoS One. 2013;8:e55477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hamshere S, Jones DA, Pellaton C, Longchamp D, Burchell T, Mohiddin S, et al. Cardiovascular magnetic resonance imaging of myocardial oedema following acute myocardial infarction: is whole heart coverage necessary? J Cardiovasc Magn Reson. 2016;18:1–9

  50. Masci PG, Bogaert J. Post myocardial infarction of the left ventricle: the course ahead seen by cardiac MRI. Cardiovasc Diagn Ther. 2012;2:113–27.

    PubMed  PubMed Central  Google Scholar 

  51. Ugander M, Bagi PS, Oki AJ, Chen B, Hsu L-Y, Aletras AH, et al. Myocardial edema as detected by pre-contrast T1 and T2 CMR delineates area at risk associated with acute myocardial infarction. J Am Coll Cardiol Imaging. 2012;5:596–603.

    Article  Google Scholar 

  52. Naßenstein K, Nensa F, Schlosser T, Bruder O, Umutlu L, Lauenstein T, et al. Cardiac MRI: T2-mapping versus T2-weighted dark-blood TSE imaging for myocardial edema visualization in acute myocardial infarction. Fortschr Röntgenstr. 2014;186:166–72.

    Google Scholar 

  53. Krumm P, Martirosian P, Rath D, Zitzelsberger T, Ruff CA, Klumpp BD, et al. Signal decay mapping of myocardial edema using dual-contrast fast spin-echo MRI. J Magn Reson Imaging. 2016;44:186–93.

    Article  PubMed  Google Scholar 

  54. Williams G, Kolodny GM. Suppression of myocardial 18F-FDG uptake by preparing patients with a high-fat, low-carbohydrate diet. AJR Am J Roentgenol. 2008;190:151–6.

    Article  Google Scholar 

  55. Nensa F, Tezgah E, Schweins K, Goebel J, Heusch P, Nassenstein K, et al. Evaluation of a low-carbohydrate diet-based preparation protocol without fasting for cardiac PET/MR imaging. J Nucl Cardiol. 2017;24:980–8.

    Article  PubMed  Google Scholar 

  56. Nensa F, Poeppel TD, Tezgah E, Heusch P, Nassenstein K, Forsting M, et al. Integrated assessment of cardiac PET/MRI: co-registered PET and MRI polar plots by mutual MR-based segmentation of the left ventricular myocardium. World J Cardiovasc Dis. 2017;7:91–104.

    Article  Google Scholar 

  57. Gutberlet M, Spors B, Thoma T, Bertram H, Denecke T, Felix R, et al. Suspected chronic myocarditis at cardiac MR: diagnostic accuracy and association with immunohistologically detected inflammation and viral persistence. Radiology. 2008;246:401–9.

    Article  PubMed  Google Scholar 

  58. Erba PA, Sollini M, Lazzeri E, Mariani G. FDG-PET in cardiac infections. Semin Nucl Med. 2013;43:377–95.

    Article  PubMed  Google Scholar 

  59. Kühl U, Schultheiss H-P. Myocarditis: early biopsy allows for tailored regenerative treatment. Dtsch Arztebl Int. 2012;109:361–8.

    PubMed  PubMed Central  Google Scholar 

  60. Caforio ALP, Pankuweit S, Arbustini E, Basso C, Gimeno-Blanes J, Felix SB, et al. Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J. 2013;34:2636–48.

    Article  PubMed  Google Scholar 

  61. Nensa F, Kloth J, Tezgah E, Poeppel TD, Heusch P, Goebel J, et al. Feasibility of FDG-PET in myocarditis: comparison to CMR using integrated PET/MRI. J Nucl Cardiol. 2016. https://doi.org/10.1007/s12350-016-0616-y. (Epub ahead of print).

  62. Friedrich MG, Sechtem U, Schulz-Menger J, Holmvang G, Alakija P, Cooper LT, et al. Cardiovascular magnetic resonance in myocarditis: a JACC white paper. J Am Coll Cardiol. 2009;53:1475–87.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Schwab J, Rogg H-J, Pauschinger M, Fessele K, Bareiter T, Bär I, et al. Functional and morphological parameters with tissue characterization of cardiovascular magnetic imaging in clinically verified “Infarct-like Myocarditis”. Fortschr Röntgenstr. 2016;188:365–73.

    CAS  Google Scholar 

  64. Grün S, Schumm J, Greulich S, Wagner A, Schneider S, Bruder O, et al. Long-term follow-up of biopsy-proven viral myocarditis: predictors of mortality and incomplete recovery. J Am Coll Cardiol. 2012;59:1604–15.

    Article  PubMed  Google Scholar 

  65. Roller FC, Harth S, Schneider C, Krombach GA. T1, T2 Mapping and extracellular volume fraction (ECV): application, value and further perspectives in myocardial inflammation and cardiomyopathies. Fortschr Röntgenstr. 2015;187:760–70.

    Article  CAS  Google Scholar 

  66. Ozawa K, Funabashi N, Daimon M, Takaoka H, Takano H, Uehara M, et al. Determination of optimum periods between onset of suspected acute myocarditis and (18)F-fluorodeoxyglucose positron emission tomography in the diagnosis of inflammatory left ventricular myocardium. Int J Cardiol. 2013;169:196–200.

    Article  PubMed  Google Scholar 

  67. Baluta MM, Benea EO, Stanescu CM, Vintila MM. Endocarditis in the 21(st) century. Maedica (Buchar). 2011;6:290–7.

    PubMed  PubMed Central  Google Scholar 

  68. Gotthardt M, Bleeker-Rovers CP, Boerman OC, Oyen WJG. Imaging of inflammation by PET, conventional scintigraphy, and other imaging techniques. J Nucl Med. 2010;51:1937–49.

    PubMed  Google Scholar 

  69. Baikoussis NG, Apostolakis E, Papakonstantinou NA, Sarantitis I, Dougenis D. Safety of magnetic resonance imaging in patients with implanted cardiac prostheses and metallic cardiovascular electronic devices. Ann Thorac Surg. 2011;91:2006–11.

    Article  PubMed  Google Scholar 

  70. Sommer T, Luechinger R, Barkhausen J, Gutberlet M, Quick HH, Fischbach K, et al. German Roentgen Society Statement on mr imaging of patients with cardiac pacemakers. Fortschr Röntgenstr. 2015;187:777–87.

    Article  CAS  Google Scholar 

  71. Schabel C, Gatidis S, Bongers M, Hüttig F, Bier G, Kupferschlaeger J, et al. Improving CT-based PET attenuation correction in the vicinity of metal implants by an iterative metal artifact reduction algorithm of CT data and its comparison to dual-energy-based strategies: a phantom study. Invest Radiol. 2017;52:61–5.

    Article  PubMed  Google Scholar 

  72. Ladefoged CN, Hansen AE, Keller SH, Fischer BM, Rasmussen JH, Law I, et al. Dental artifacts in the head and neck region: implications for Dixon-based attenuation correction in PET/MR. EJNMMI Phys. 2015;2:8.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Frank H, Globits S. Magnetic resonance imaging evaluation of myocardial and pericardial disease. J Magn Reson Imaging. 1999;10:617–26.

    Article  CAS  PubMed  Google Scholar 

  74. Etesami M, Gilkeson RC, Rajiah P. Utility of late gadolinium enhancement in pediatric cardiac MRI. Pediatr Radiol. 2016;46:1096–113.

    Article  PubMed  Google Scholar 

  75. Hergan K, Globits S, Schuchlenz H, Kaiser B, Fiegl N, Artmann A, et al. Clinical relevance and indications for cardiac magnetic resonance imaging 2013: an interdisciplinary expert statement. Fortschr Röntgenstr. 2013;185:209–18.

    Article  CAS  Google Scholar 

  76. Raposeiras Roubín S, Maceira González A. Dry pericarditis, diagnosis with cardiac magnetic resonance imaging. Rev Esp Cardiol. 2013;66:584.

  77. James O, Christensen J. Utility of FDG PET/CT in inflammatory cardiovascular disease. Radiographics. 2011;31:1271–86.

    Article  PubMed  Google Scholar 

  78. Prasse A. The Diagnosis, Differential diagnosis, and treatment of sarcoidosis. Dtsch Arztebl Int. 2016;113:565–74.

    PubMed  PubMed Central  Google Scholar 

  79. Rubini G, Cappabianca S, Altini C, Notaristefano A, Fanelli M, Stabile Ianora AA, et al. Current clinical use of 18FDG-PET/CT in patients with thoracic and systemic sarcoidosis. Radiol Med. 2014;119:64–74.

    Article  PubMed  Google Scholar 

  80. Sobic-Saranovic D, Artiko V, Obradovic V. FDG PET imaging in sarcoidosis. Semin Nucl Med. 2013;43:404–11.

    Article  PubMed  Google Scholar 

  81. Schindler TH, Solnes L. Role of PET/CT for the identification of cardiac sarcoid disease. Ann Nucl Cardiol. 2015;1:79–86.

    Article  Google Scholar 

  82. O’Donnell DH, Abbara S, Chaithiraphan V, Yared K, Killeen RP, Martos R, et al. Cardiac MR imaging of nonischemic cardiomyopathies: imaging protocols and spectra of appearances. Radiology. 2012;262:403–22.

    Article  PubMed  Google Scholar 

  83. Rieker O, Mohrs O, Oberholzer K, Kreitner KF, Thelen M. Cardiac MRI in suspected myocarditis [German]. Fortschr Röntgenstr. 2002;174:1530–6.

    Article  CAS  Google Scholar 

  84. Maisch B, Seferović PM, Ristić AD, et al. Guidelines on the diagnosis and management of pericardial diseases executive summary; the task force on the diagnosis and management of pericardial diseases of the European Society of Cardiology. Eur Heart J. 2004;25:587–610

    Article  PubMed  Google Scholar 

  85. Greulich S, Deluigi CC, Gloekler S, Wahl A, Zürn C, Kramer U, et al. CMR imaging predicts death and other adverse events in suspected cardiac sarcoidosis. J Am Coll Cardiol Img. 2013;6:501–11.

    Article  Google Scholar 

  86. Dweck MR, Abgral R, Trivieri MG, Robson PM, Karakatsanis N, Mani V, et al. Hybrid magnetic resonance imaging and positron emission tomography with fluorodeoxyglucose to diagnose active cardiac sarcoidosis. J Am Coll Cardiol Img. 2018;11:94–107.

    Article  Google Scholar 

  87. Travin MI, Bergmann SR. Assessment of myocardial viability. Semin Nucl Med. 2005;35:2–16.

    Article  PubMed  Google Scholar 

  88. White JA, Rajchl M, Butler J, Thompson RT, Prato FS, Wisenberg G. Active cardiac sarcoidosis: first clinical experience of simultaneous positron emission tomography–magnetic resonance imaging for the diagnosis of cardiac disease. Circulation. 2013;127:e639–41.

    Article  PubMed  Google Scholar 

  89. Nensa F, Tezgah E, Poeppel T, Nassenstein K, Schlosser T. Diagnosis and treatment response evaluation of cardiac sarcoidosis using positron emission tomography/magnetic resonance imaging. Eur Heart J. 2015;36:550.

    Article  PubMed  Google Scholar 

  90. Wada K, Niitsuma T, Yamaki T, Masuda A, Ito H, Kubo H, et al. Simultaneous cardiac imaging to detect inflammation and scar tissue with (18)F-fluorodeoxyglucose PET/MRI in cardiac sarcoidosis. J Nucl Cardiol. 2016;23:1180–2.

    Article  PubMed  Google Scholar 

  91. Sobic-Saranovic D, Grozdic I, Videnovic-Ivanov J, Vucinic-Mihailovic V, Artiko V, Saranovic D, et al. The utility of 18F-FDG PET/CT for diagnosis and adjustment of therapy in patients with active chronic sarcoidosis. J Nucl Med. 2012;53:1543–9.

    Article  PubMed  Google Scholar 

  92. Ohira H, Birnie DH, Pena E, Bernick J, Mc Ardle B, Leung E, et al. Comparison of (18)F-fluorodeoxyglucose positron emission tomography (FDG PET) and cardiac magnetic resonance (CMR) in corticosteroid-naive patients with conduction system disease due to cardiac sarcoidosis. Eur J Nucl Med Mol Imaging. 2016;43:259–69

    Article  CAS  PubMed  Google Scholar 

  93. Kim JS, Judson MA, Donnino R, Gold M, Cooper LT, Prystowsky EN, et al. Cardiac sarcoidosis. Am Heart J. 2009;157:9–21.

    Article  CAS  PubMed  Google Scholar 

  94. Schatka I, Bengel FM. Advanced imaging of cardiac sarcoidosis. J Nucl Med. 2014;55:99–106.

    Article  PubMed  Google Scholar 

  95. Antoni G, Lubberink M, Estrada S, Axelsson J, Carlson K, Lindsjö L, et al. In vivo visualization of amyloid deposits in the heart with 11C-PIB and PET. J Nucl Med. 2013;54:213–20.

    Article  CAS  PubMed  Google Scholar 

  96. Li R, Yang Z, Wen L, Liu X, Xu H, Zhang Q, et al. Regional myocardial microvascular dysfunction in cardiac amyloid light-chain amyloidosis: assessment with 3T cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2016;18:16.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Brooks J, Kramer CM, Salerno M. Markedly increased volume of distribution of gadolinium in cardiac amyloidosis demonstrated by T1 mapping. J Magn Reson Imaging. 2013;38:1591–5.

    Article  PubMed  Google Scholar 

  98. Baeßler B, Reuter H, Huntgeburth M, Bunck A. Abnormal gadolinium kinetics in cardio MRI—always an indication of cardiac amyloidosis? Fortschr Röntgenstr. 2014;187:189–91.

    Article  Google Scholar 

  99. Pandey T, Jambhekar K, Shaikh R, Lensing S, Viswamitra S. Utility of the inversion scout sequence (TI scout) in diagnosing myocardial amyloid infiltration. Int J Cardiovasc Imaging. 2013;29:103–12.

    Article  PubMed  Google Scholar 

  100. Mueller KAL, Mueller II, Eppler D, Zuern CS, Seizer P, Kramer U, et al. Clinical and histopathological features of patients with systemic sclerosis undergoing endomyocardial biopsy. PLoS One. 2015;10:e0126707.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Lambova S. Cardiac manifestations in systemic sclerosis. World J Cardiol. 2014;6:993–1005.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Krumm P, Mueller KAL, Klingel K, Kramer U, Horger MS, Zitzelsberger T, et al. Cardiovascular magnetic resonance patterns of biopsy proven cardiac involvement in systemic sclerosis. J Cardiovasc Magn Reson. 2016;18:70.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Kobayashi H, Yokoe I, Hirano M, Nakamura T, Nakajima Y, Fontaine KR, et al. Cardiac magnetic resonance imaging with pharmacological stress perfusion and delayed enhancement in asymptomatic patients with systemic sclerosis. J Rheumatol. 2009;36:106–12.

    PubMed  Google Scholar 

  104. Hoffmann B, Mayatepek E. Fabry disease-often seen, rarely diagnosed. Dtsch Arztebl Int. 2009;106:440–7.

    PubMed  PubMed Central  Google Scholar 

  105. Wuest W, Machann W, Breunig F, Weidemann F, Koestler H, Hahn D, et al. Right ventricular involvement in patients with Fabry’s disease and the effect of enzyme replacement therapy. Fortschr Röntgenstr. 2011;183:1037–42.

    Article  CAS  Google Scholar 

  106. Deva DP, Hanneman K, Li Q, Ng MY, Wasim S, Morel C, et al. Cardiovascular magnetic resonance demonstration of the spectrum of morphological phenotypes and patterns of myocardial scarring in Anderson–Fabry disease. J Cardiovasc Magn Reson. 2016;18:14.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Petritsch B, Köstler H, Machann W, Horn M, Weng AM, Goltz JP, et al. Non-invasive determination of myocardial lipid content in Fabry disease by 1H-MR spectroscopy. Fortschr Röntgenstr. 2012;184:1020–5.

    Article  CAS  Google Scholar 

  108. Nappi C, Altiero M, Imbriaco M, Nicolai E, Giudice CA, Aiello M, et al. First experience of simultaneous PET/MRI for the early detection of cardiac involvement in patients with Anderson–Fabry disease. Eur J Nucl Med Mol Imaging. 2015;42:1025–31.

    Article  CAS  PubMed  Google Scholar 

  109. Wood JC. Cardiac iron across different transfusion-dependent diseases. Blood Rev. 2008;22 Suppl 2:S14–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Alam MH, He T, Auger D, Smith GC, Drivas P, Wage R, et al. Validation of T2* in-line analysis for tissue iron quantification at 1.5 T. J Cardiovasc Magn Reson. 2016;18:23.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Wunderlich AP, Cario H, Juchems MS, Beer M, Schmidt SA. Noninvasive MRI-based liver iron quantification: methodic approaches, practical applicability and significance. Fortschr Röntgenstr. 2016;188:1031–6.

    Article  CAS  Google Scholar 

  112. Henninger B, Zoller H, Rauch S, Finkenstedt A, Schocke M, Jaschke W, et al. R2* relaxometry for the quantification of hepatic iron overload: biopsy-based calibration and comparison with the literature. Fortschr Röntgenstr. 2015;187:472–9.

    Article  CAS  Google Scholar 

  113. Patel R, Lim RP, Saric M, Nayar A, Babb J, Ettel M, et al. Diagnostic performance of cardiac magnetic resonance imaging and echocardiography in evaluation of cardiac and paracardiac masses. Am J Cardiol. 2016;117:135–40.

    Article  PubMed  Google Scholar 

  114. Motwani M, Kidambi A, Herzog BA, Uddin A, Greenwood JP, Plein S. MR imaging of cardiac tumors and masses: a review of methods and clinical applications. Radiology. 2013;268:26–43.

    Article  PubMed  Google Scholar 

  115. Maurer AH, Burshteyn M, Adler LP, Steiner RM. How to differentiate benign versus malignant cardiac and paracardiac 18F FDG uptake at oncologic PET/CT. Radiographics. 2011;31:1287–305.

    Article  PubMed  Google Scholar 

  116. Rahbar K, Seifarth H, Schäfers M, Stegger L, Hoffmeier A, Spieker T, et al. Differentiation of malignant and benign cardiac tumors using 18F-FDG PET/CT. J Nucl Med. 2012;53:856–63.

    Article  CAS  PubMed  Google Scholar 

  117. Leja MJ, Shah DJ, Reardon MJ. Primary cardiac tumors. Tex Heart Inst J. 2011;38:261–2.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Krumm.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Fabian Bamberg and Christian la Fougère share senior authorship.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krumm, P., Mangold, S., Gatidis, S. et al. Clinical use of cardiac PET/MRI: current state-of-the-art and potential future applications. Jpn J Radiol 36, 313–323 (2018). https://doi.org/10.1007/s11604-018-0727-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11604-018-0727-2

Keywords

Navigation