Skip to main content
Log in

An improved protocol for primary culture of cardiomyocyte from neonatal mice

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

The primary culture of neonatal mice cardiomyocyte model enables researchers to study and understand the morphological, biochemical, and electrophysiological characteristics of the heart, besides being a valuable tool for pharmacological and toxicological studies. Because cardiomyocytes do not proliferate after birth, primary myocardial culture is recalcitrant. The present study describes an improved method for rapid isolation of cardiomyocytes from neonatal mice, as well as the maintenance and propagation of such cultures for the long term. Immunocytochemical and gene expression data also confirmed the presence of several cardiac markers in the beating cells during the long-term culture condition used in this protocol. The whole culture process can be effectively shortened by reducing the enzyme digestion period and the cardiomyocyte enrichment step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.
Figure 2.
Figure 3.

Similar content being viewed by others

References

  • Ahuja, P.; Sdek, P.; MacLellan, W.R. Cardiac myocyte cell cycle control in development, disease, and regeneration. Physiol. Rev. 87(2):521–544; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Bahi, N.; Zhang, J.; Llovera, M.; Ballester, M.; Comella, J.X.; Sanchis, D. Switch from caspase-dependent to caspase-independent death during heart development: essential role of endonuclease G in ischemia-induced DNA processing of differentiated cardiomyocytes. J. Biol. Chem. 281(32):22943–22952; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Bick, R.J.; Snuggs, M.B.; Poindexter, B.J.; Buja, L.M.; Van Winkle, W.B. Physical, contractile and calcium handling properties of neonatal cardiac myocytes cultured on different matrices. Cell Adhes. Commun. 6(4)301–310; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Blondel, B.; Roijen, I.; Cheneval, J.P. Heart cells in culture: a simple method for increasing the proportion of myoblasts. Experientia 27:356–358; 1971.

    Article  PubMed  CAS  Google Scholar 

  • Bryja, V.; Bonilla, S.; Cajánek, L.; Parish, C.L.; Schwartz, C.M.; Luo, Y.; et al. An efficient method for the derivation of mouse embryonic stem cells. Stem. Cells 24(4)844–849; 2006.

    Article  PubMed  Google Scholar 

  • Chlopclkova, Š.; Psotova, J.; Miketova, P. Neonatal rat cardiomyocytes—a model for the study of morphological, biochemical and electrophysiological characteristic of the heart. Biomed. Papers 145:49–55; 2001.

    Google Scholar 

  • Chomczynski, P.; Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Anal. Biochem. 162(1):156–159; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Clark, W.J. Selective control of fibroblast proliferation and its effect on cardiac muscle differentiation in vitro. Dev. Biol. 52:263–282; 1976.

    Article  PubMed  CAS  Google Scholar 

  • Desmond, W.J.; Harary I. In vitro studies of beating heart cells in culture. XV. Myosin turnover and the effect of serum. Arch. Biochem. Biophys. 151:285–294; 1972.

    Article  PubMed  CAS  Google Scholar 

  • Duarte, A.I.; Proença, T.; Oliveira, C.R.; Santos, M.S.; Rego C. Insulin restores metabolic function in cultured cortical neurons subjected to oxidative stress. Diabetes 55:2863–2870; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Fioramonti, M.C.; Bryant, J.C.; Mcquilkin, W.T.; Evans, V.J.; Sanford, K.K.; Earle, W.R. The effect of horse serum residue and chemically defined supplements on proliferation of Strain L Clone 929 Cells from the Mouse. Cancer Res. 15(11):763–766; 1955.

    PubMed  CAS  Google Scholar 

  • Flanders, K.C.; Holder, M.G.; Winokur, T.S. Autoinduction of mRNA and protein expression for transforming growth factor-βs in cultured cardiac cells. J. Mol. Cell Cardiol. 27(2):805–812; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Fu, J.; Gao, J.; Pi, R.; Liu, P. An optimized protocol for culture of cardiomyocyte from neonatal rat. Cytotechnology 49:109–116; 2005.

    Article  CAS  Google Scholar 

  • Haas, R.; Banerji, S.S.; Culp, L.A. Adhesion site composition of murine fibroblasts cultured on gelatin-coated substrata. J. Cell Physiol. 120(2):117–125; 1984.

    Article  PubMed  CAS  Google Scholar 

  • Harary, I.; Farley, B. In vitro studies on single beating rat heart cells II intercellular communication. Exp. Cell Res. 29:466–474; 1963.

    Article  PubMed  CAS  Google Scholar 

  • Healy, G.M.; Parker, R.C. Cultivation of mammalian cells in defined media with protein and nonprotein supplements. J. Cell Biol. 30(3):539–553; 1966.

    Article  PubMed  CAS  Google Scholar 

  • Kruppenbacher, J.P.; May, T.; Eggers, H.J.; Piper, H.M. Cardiomyocytes of adult mice in long-term culture. Naturwissenschaften 80:132–134; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Limaye, D.A.; Shaikh, Z.A. Cytotoxicity of cadmium and characteristics of its transport in cardiomyocytes. Toxicol. Appl. Pharmacol. 154(1):59–66; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Mark, G.E.; Strasser, F.F. Pacemaker activity and mitosis in cultures of newborn rat heart ventricle cells. Exp. Cell Res. 44:217–233; 1966.

    Article  PubMed  CAS  Google Scholar 

  • Matsuura, K.; Wada, H.; Nagai, T.; Iijima, Y.; Minamino, T.; Sano, M.; et al. Cardiomyocytes fuse with surrounding noncardiomyocytes and reenter the cell cycle. J. Cell Biol. 167(2):351–363; 2004.

    Article  PubMed  CAS  Google Scholar 

  • McKoy, G.; Bicknell, K.A.; Patel, K.; Brooks, G. Developmental expression of myostatin in cardiomyocytes and its effect on foetal and neonatal rat cardiomyocyte proliferation. Cardiovasc. Res. 74(2):304–312; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Nickson, P.; Toth, A.; Erhardt, P. PUMA is critical for neonatal cardiomyocyte apoptosis induced by endoplasmic reticulum stress. Cardiovasc. Res. 73(1):48–56; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Nuss, H.B.; Marban, E. Electrophysiological properties of neonatal mouse cardiac myocytes in primary culture. J. Physiol. 479(2):265–279; 1994.

    PubMed  Google Scholar 

  • Pellieux, C.; Foletti, A.; Peduto, G.; Aubert, J. F.; Nussberger, J.; Beermann, F.; et al. Dilated cardiomyopathy and impaired cardiac hypertrophic response to angiotensin II in mice lacking FGF-2. J. Clin. Invest. 108:1843–1851; 2001.

    PubMed  CAS  Google Scholar 

  • Polinger, I.S. Separation of cell types in embryonic heart cell cultures. Exp. Cell Res. 63:78–82; 1970.

    Article  PubMed  CAS  Google Scholar 

  • Rao, V.; Merante, F.; Weisel, R.D.; Shirai, T.; Ikonomidis, J.S.; Cohen, G.; et al. Insulin stimulates pyruvate dehydrogenase and protects human ventricular cardiomyocytes from simulated ischemia. J. Thorac. Cardiovasc. Surg. 116(3):485–494; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Remião, F.; Carmo, H.; Carvalho, F.; Bastos, M.L. Cardiotoxicity studies using freshly isolated calcium-tolerant cardiomyocytes from adult rat. In Vitro Cell Dev. Biol.—Animal 37:1–4; 2001.

    Article  Google Scholar 

  • Rosenblatt, V.N.; Lepore, M.G.; Cartoni, C.; Beermann, F.; Pedrazzini, T. FGF-2 controls the differentiation of resident cardiac precursors into functional cardiomyocytes. J. Clin. Invest. 115(7):1724–1733; 2005.

    Article  CAS  Google Scholar 

  • Shields, P.P.; Dixon, J.E.; Glembotski, C.C. The secretion of atrial natriuretic factor-(99–126) by cultured cardiac myocytes is regulated by glucocorticoids. J. Biol. Chem. 26:3126–3128; 1988.

    Google Scholar 

  • Simpson, P.; Savion, S. Differentiation of myocytes in single cell cultures with and without proliferating nonmyocardial cells. Circ. Res. 50:101–116; 1982. Circ. Res. 50:101–116; 1982.

    PubMed  CAS  Google Scholar 

  • Song, W.; Lu, X.; Feng, Q. Tumor necrosis factor-alpha induces apoptosis via inducible nitric oxide synthase in neonatal mouse cardiomyocytes. Cardiovasc. Res. 45(3):595–602; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Wang, G.W.; Kang, Y.J. Inhibition of doxorubicin toxicity in cultured neonatal mouse cardiomyocytes with elevated metallothionein levels. J. Pharmacol. Exp. Ther. 288(3):938–944; 1999.

    PubMed  CAS  Google Scholar 

  • Yamashita, N.; Nishida, M.; Hoshida, S.; Kuzuya, T.; Hori, M.; Taniguchi N.; et al. Induction of manganese superoxide dismutase in rat cardiac myocytes increases tolerance to hypoxia 24 h after preconditioning. J. Clin. Invest. 94:2193–2199; 1994.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by grants to R.S.V. by the Ministry of Human Resource Development (MHRD—BIO/2005–2006/007/MHRD/RAMS/859) and Department of Biotechnology, Ministry of Science and Technology (DBT-BT/PR5392/MED/14/693/2004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rama S. Verma.

Additional information

Editor: J. Denry Sato.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Cardiomyocte beating in cluster (MPG 1.15 MB)

Individual beating cardiomyocytes (MPG 988 kb)

Single beating cardiomyocyte (MPG 982 kb)

(MPG 1.42 MB)

Supplementary Table 1

PCR primers used for the study (DOC 30.5 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sreejit, P., Kumar, S. & Verma, R.S. An improved protocol for primary culture of cardiomyocyte from neonatal mice. In Vitro Cell.Dev.Biol.-Animal 44, 45–50 (2008). https://doi.org/10.1007/s11626-007-9079-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-007-9079-4

Keywords

Navigation