Skip to main content
Log in

Development of transgenic cabbage (Brassica oleracea var. Capitata) for insect resistance by Agrobacterium tumefaciens-mediated transformation

  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

Transgenic head cabbage (Brassica oleracea var. capitata), resistant to diamondback moth (Plutella xylostella) larvae, was developed through Agrobacterium tumefaciens-mediated transformation with Bacillus thuringiensis (Bt) cry genes using a modified procedure. Factors important for transformation included cabbage cultivar; preculture and coculture of explants on a callus initiation medium; use of appropriate amount; and delay in initial application of selective agents. A total of 15 independent transformed lines with over 100 plants were obtained from several transformation experiments, representing an overall transformation efficiency of ∼1%. Cabbage plants transformed with a synthetic Bt gene, cry1Ab3, were all resistant to larvae of the diamondback moth, whereas all plants transgenic for cryIIa3, a wild-type Bt gene, were susceptible. As a first step towards testing the hypothesis that reduced exposure of Bt to target insects would delay the evolution of insect resistance to Bt, cry1Ab3 expression was put under the transcriptional control of the soybean wound-inducible vspB promoter and transgenic cabbage was obtained. Insect bioassay showed that such plants were all resistant to diamondback moth even without induction for the expression of Bt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berthomieu, P.; Béclin, C.; Charlot, F.; Doré, C.; Jouanin, L.. Routine transformation of rapid cycling cabbage (Brassica oleracea)—molecular evidence for regeneration of chimeras. Plant Sci. 96:223–235; 1994.

    Article  CAS  Google Scholar 

  • Berthomieu, P.; Jouanin, L. Transformation of rapid cycling cabbage (Brassica oleracea var. capitata) with Agrobacterium rhizogenes. Plant Cell Rep. 11:334–338; 1992.

    Article  CAS  Google Scholar 

  • Christey, M. C.; Sinclair, B. K.; Braun, R. H. Regeneration of transgenic vegetable brassicas (Brassica oleracea and B. campestris) via Rimediated transformation. Plant Cell Rep. 16:587–593; 1997.

    CAS  Google Scholar 

  • Crickmore, N.; Zeigler, D. R.; Feitelson, J.; Schnepf, E.; Van Rie, J.; Lereclus, D.; Baum, J.; Dean, D. H. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62:807–813; 1998.

    PubMed  CAS  Google Scholar 

  • Diehn, S. H.; Chiu, W.-L.; Rocher, E. J. D.; Green, P. J. Premature polyadenylation at multiple sites within a Bacillus thuringiensis toxin gene-coding region. Plant Physiol. 117:1433–1443; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Doyle, J. D.; Doyle, J. L., Isolation of plant DNA from fresh tissue. Focus 12:13–15; 1990.

    Google Scholar 

  • Eimert, K.; Siegemund, F. Transformation of cauliflower (Brassica oleracea L. var. botrytis)—an experimental survey. Plant Mol. Biol. 19:485–490; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Gamborg, O. L.; Miller, R. A.; Ojima, K., Nutrient requirement of suspension cultures of soybean root cells. Exp. Cell Res. 50:151–158; 1968.

    Article  PubMed  CAS  Google Scholar 

  • Gatz, C. Chemical control of gene expression. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48:89–108; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Gelvin, S. B.; Liu, C.-N., Genetic engineering of Agrobacterium tumefaciens strains to improve transformation of recalcitrant plant species. In: Gelvin, S. B.; Schilperoort, R. A., eds. Plant molecular biology manual, Dordrecht, The Netherlands; Kluwer Academic; 1994; 1–13.

    Google Scholar 

  • Holsters, M.; de Waele, D.; Depicker, A.; Messens, E.; Van Montagu, M.; Schell, J. Transfection and transformation of Agrobacterium tumefaciens. Mol. Gen. Genet. 163:181–187; 1978.

    Article  PubMed  CAS  Google Scholar 

  • Hood, E. E.; Gelvin, S. B.; Melchers, L. S.; Hoekema, A. New Agrobacterium helper plasmids for gene transfer to plants. Transgen. Res. 2:208–218; 1993.

    Article  CAS  Google Scholar 

  • Jin, R.-G.; Liu, Y.-B.; Tabashnik, B. E.; Borthakur, D., Tissue culture and Agrobacterium-mediated transformation of watereress. Plant Cell Tiss. Org. Cult. 58:171–176; 1999.

    Article  CAS  Google Scholar 

  • Koziel, M. G.; Beland, G. L.; Bowman, C.; Carozzi, N. B.; Crenshaw, R.; Crossland, L.; Dawson, J.; Desai, N.; Hill, M.; Kadwell, S.; Launis, K.; Lewis, K.; Maddox, D.; McPherson, K.; Meghji, M. R.; Merlin, E.; Rhodes, R.; Warren, G. W.; Wright, M.; Evola, S. V., Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Bio/Technol. 11:194–200; 1993.

    Article  CAS  Google Scholar 

  • Liu, Y.-B.; Tabashnik, B. E. Experimental evidence that refuges delay insect adaptation to Bacillus thuringiensis. Proc. R. Soc. Lond. B. 264:605–610; 1997.

    Article  Google Scholar 

  • Liu, Y.-B.; Tabashnik, B. E., Elimination of a recessive allele conferring resistance to Bacillus thuringiensis from a heterogeneous strain of diamondback moth (Lepidoptera: Plutellidae). J. Econ. Entomol. 91:1032–1037; 1998.

    Google Scholar 

  • Mason, H. S.; Mullet, J. E., Expression of two soybean vegetative storage protein genes during development and in response to water deficit, wounding, and jasmonic acid. Plant Cell 2:569–579; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Metz, T. D.; Dixit, R.; Earle, E. D., Agrobacterium tumefaciens-mediated transformation of broccoli (Brassica oleracea var. italica) and cabbage (B. oleracea var. capitata) Plant Cell Rep. 15:287–292; 1995.

    Article  CAS  Google Scholar 

  • Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol. Plant 15:473–497; 1962.

    Article  CAS  Google Scholar 

  • Ovesná, J.; Ptacek, L.; Opatrny, Z., Factors influencing the regeneration capacity of oilseed rape and cauliflower in transformation experiments. Biologia Plant 35:107–112; 1993.

    Article  Google Scholar 

  • Passelègue, E.; Kerlan, C. Transformation of cauliflower (Brassica oleracea var. botrytis) by transfer of cauliflower mosaic virus gene through cocultivation with virulent and avirulent strains of Agrobacterium. Plant Sci. 113:79–89; 1995.

    Article  Google Scholar 

  • Pawlowski K.; Kunze, R.; Vries, S.; Bisseling, T., Isolation of total, poly(A) and polysomal RNA from plant tissues. In: Gelvin, S. B.; Schilperoort, R. A., eds. Plant molecular biology manual. Dordrecht, The Netherlands: Kluwer Academic; 1994; 2–4.

    Google Scholar 

  • Peferoen, M. Progress and prospects for field use of Bt genes in crops. Tibtech. 15:173–177; 1997.

    CAS  Google Scholar 

  • Pua, E. C.; Mehra-Paita, A.; Nagy, F.; Chua, N. H. Transgenic plants of Brassica napus L., Bio/Technol. 5:815–817; 1987.

    Article  Google Scholar 

  • Puddephat, I. J.; Riggs, T. J.; Fenning, T. M. Transformation of Brassica oleracea L: a critical review. Mol. Breed. 2:185–210; 1996.

    Article  Google Scholar 

  • Rocher, E. J. D.; Vargo-Gogola, T. C.; Diehn, S. H.; Green, P. J. Direct evidence for rapid degradation of Bacillus thuringiensis toxin mRNA as a cause of poor expression in plants. Plant Physiol. 117:1445–1461; 1998.

    Article  PubMed  Google Scholar 

  • Shin, B.-S.; Park, S.-H.; Choi, S.-K.; Koo, B.-T.; Lee, S.-T.; Kim, J.-I. Distribution of cry V-type insecticidal protein genes in Bacillus thuringiensis and cloning of cryV-type genes from Bacillus thuringiensis subsp, kurstaki and Bacillus thuringiensis subsp. entomocidus. Appl. Environ. Microbiol. 61:2402–2407; 1995.

    PubMed  CAS  Google Scholar 

  • Srivastava, V.; Reddy, A. S.; Guha-Mukhejee, S., Transformation and regeneration of Brassica oleracea mediated by an oncogenic Agrobacterium tumefaciens. Plant Cell Rep. 7:504–507; 1988.

    Article  CAS  Google Scholar 

  • Tabashnik, B. E. Evolution of resistance to Bacillus thuringiensis. Annu. Rev. Entomol. 39:47–79; 1994.

    Article  Google Scholar 

  • Tabashnik, B. E.; Liu, Y.-B.; Malvar, T.; Heckel, D. G.; Masson, L.; Ballester, V.; Granero, F.; Mènsua, J. L.; Ferrè, J. Global variation in the genetic and biochemical basis of diamondback moth resistance to Bacillus thuringiensis. Proc. Natl Acad. Sci. U.S.A. 94:12780–12785; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Tabashnik, B. E.; Malvar, T.; Liu, Y.-B.; Borthakur, D.; Shin, B. S.; Park, S. H.; Masson, L.; de Maagd, R. A.; Bosch, D. Cross-resistance of diamondback moth indicates altered interactions with domain II of Bacillus thuringiensis toxins. Appl. Environ. Microbiol. 62:2839–2844; 1996.

    PubMed  CAS  Google Scholar 

  • Talekar, N. S.; Shelton, A. M. Biology, ecology, and management of diamondback moth. Annu. Rev. Entomol. 38:275–301; 1993.

    Article  Google Scholar 

  • Tang, J. D.; Gilboa, S.; Roush, R. T.; Shelton, A. M. Inheritance, stability, and lack-of-fitness costs of field-selected resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae) from Florida. J. Econ. Entomol. 90:732–741; 1997.

    Google Scholar 

  • Tepfer, D. Ri T-DNA from Agrobacterium rhizogenes: a source of genes having applications in rhizosphere biology and plant development, ecology, and evolution. In: Kosuge, T.; Nester, E. W., eds. Plantmicrobe interactions. Molecular and genetic perspectives, Vol. 3, New York, U.S.A.: McGraw-Hill; 1989; 294–342.

    Google Scholar 

  • Thomzik, J. E., Transformation in oilseed rape (Brassica napus L) In: Bajaj, Y. P. S., ed. Plant protoplasts and genetic enginerring. IV. Biotechnology in agriculture and forestry, Vol. 23, Berlin/Heidelberg, Germany: Springer-Verlag; 1993; 170–182.

    Google Scholar 

  • Toriyama, K.; Stein, J. C.; Nasrallah, M. E.; Nasrallah, J. B. Transformation of Brassica oleracea with an S-locus gene from B. campestris changes the self-incompatibility phenotype. Theor. Appl. Genet. 81:769–776; 1991.

    Article  CAS  Google Scholar 

  • Trail, F.; Richards, C.; Wu, F.-S., Genetic manipulation in Brassica. In: Bajaj, Y. P. S., ed. Plant protoplasts and genetic engineering. II. Biotechnology in agriculture and forestry, Vol. 9, Berlin/Heidelberg, Germany: Springer-Verlag; 1989; 197–215.

    Google Scholar 

  • Wünn, J.; Klöti, A.; Burkhardt, P. K.; Biswas, G. C. G.; Launis, K.; Iglesias, V. A.; Potrykus, I. Transgenic Indica rice breeding line IR58 expressing a synthetic cryA(b) gene from Bacillus thuringiensis provides effective insect pest control. Bio/Technol. 14:171–176; 1996.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Borthakur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, R.G., Liu, Y.B., Tabashnik, B.E. et al. Development of transgenic cabbage (Brassica oleracea var. Capitata) for insect resistance by Agrobacterium tumefaciens-mediated transformation. In Vitro Cell.Dev.Biol.-Plant 36, 231–237 (2000). https://doi.org/10.1007/s11627-000-0043-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-000-0043-1

Key words

Navigation