Skip to main content
Log in

Effect of an enhanced CaMV 35S promoter and a fruit-specific promoter on uida gene expression in transgenic tomato plants

  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

Two different promoters, a cauliflower mosaic virus (CaMV) 35S promoter with a 5′-untranslated leader sequence from alfalfa mosaic virus RNA4 (designated as CaMV 35S/AMV) and an E-8 fruit-ripening-specific promoter, were compared to evaluate their effects on expression of the uidA reporter gene in transgenic tomato plants. In order to generate sufficient numbers of transgenic tomato plants, both a reliable regeneration system and an efficient Agrobacterium transformation protocol were developed using 8-d-old cotyledons of tomato (Lycopersicon ecsulentum Mill. cv. Swifty Belle). Two sets of constructs, both derivatives of the binary vector pBI121, were used in transformation of tomato whereby the uidA gene was driven either by the CaMV 35S/AMV or the E-8 fruit-ripening-specific promoter. Southern blot hybridization confirmed the stable integration of the chimeric uidA gene into the tomato genome. Fruit and leaf tissues were collected from T0 and T1 plants, and assayed for β-glucuronidase (GUS) enzyme activity. As expected, both vegetative and fruit tissues of transgenic plants carrying the uidA gene under the control of CaMV 35S/AMV showed varying levels of GUS activity, while no expression was observed in vegetative tissues of transgenic plants carrying the uidA gene driven by the E-8 promoter. All fruits from transgenic plants produced with both sets of constructs displayed expression of the uidA gene. However, when this reporter gene was driven by the CaMV 35S/AMV, GUS activity levels were significantly higher than when it was driven by the E-8 fruit-specific promoter. The presence/absence of the uidA gene in T1 plants segregated in a 3∶1 Mendelian ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Charest, P. J.; Calero, N.; Lachance, D.; Datla, R. S. S.; Duchesne, L. S.; Tsang, E. W. T. Microprojectile-DNA delivery in conifer species: factors affecting assessment of transient gene expression. Plant Cell Rep. 12:189–193; 1993.

    Article  CAS  Google Scholar 

  • Chyi, Y.-S.; Phillips, G. C. High efficiency Agrobacterium-mediated transformation of Lycopersicon based on conditions favorable for regeneration. Plant Cell Rep. 6:105–108; 1987.

    CAS  Google Scholar 

  • Coupe, S. A.; Deikman, J. Characterization of a DNA-binding protein that interacts with a 5′ flanking region of two fruit-ripening genes. Plant Cell 11:1207–1218; 1997.

    CAS  Google Scholar 

  • D'Aoust, M. A.; Nguyen-Quoc, B.; Le, V. Q.; Yelle, S. Upstream regulatory regions from the maize Sh1 promoter confer tissue-specific expression of the β-glucuronidase gene in tomato. Plant Cell Rep. 18:803–808; 1999.

    Article  Google Scholar 

  • Datla, R. S. S.; Bekkaoui, F.; Hammerlindl, J. K.; Pilate, G.; Dunstan, D. I.; Crosby, W. L. Improved high-level constitutive foreign gene expression in plants using an AMV RNA4 untranslated leader sequence. Plant Sci. 94:139–149; 1993.

    Article  CAS  Google Scholar 

  • Davis, M. E.; Miller, A. R.; Lineberger, R. D. Temporal competence for transformation of Lycopersicon esculentum L. (Mill.) cotyledons by Agrobacterium tumefaciens: relation to wound-healing and soluble plant factors. J. Exp. Bot. 42:359–364; 1991.

    Article  Google Scholar 

  • Deikman, J.; Xu, R.; Kneissi, M. L.; Ciardi, J. A.; Kim, K.-N.; Pelah, D. Separation of cis elements responsive to ethylene, fruit development, and ripening in the 5′-flanking region of the ripening-related E8 gene. Plant Mol. Biol. 37:1001–1011; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Filatti, J. J.; Kiser, J.; Rose, R.; Comai, L. Efficient transfer of a glyphosate tolerance gene into tomato using Agrobacterium tumefaciens vector. Bio/Technology 5:726–730; 1987.

    Article  Google Scholar 

  • Gamborg, O. G.; Miller, R. A.; Ojima, K. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 50:151–158; 1968.

    Article  PubMed  CAS  Google Scholar 

  • Good, X.; Kellog, J. A.; Wagoner, W.; Landhoff, D.; Matsumura, W.; Bestwick, R. K. Reduced ethylene synthesis by transgenic tomatoes expressed S-adenosylmethionine hydrolase. Plant Mol. Biol. 26:781–790; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Haggman, H.; Aronen, T. Transgene expression in regenerating cotyledons and embryogenic cultures of Scots pine. J. Exp. Bot. 49:1147–1156; 1998.

    Article  CAS  Google Scholar 

  • Hamza, S.; Chupeau, Y. Re-evaluation of conditions for plant regeneration and Agrobacterium-mediated transformation from tomato (Lycopersicon esculentum). J. Exp. Bot. 44:1837–1845; 1993.

    Article  CAS  Google Scholar 

  • Huetteman, C. A.; Preece, J. E. Thidiazuron: a potent cytokinin for woody plant tissue culture. Plant Cell Tiss. Organ Cult. 33:105–119; 1993.

    Article  CAS  Google Scholar 

  • Jefferson, R. A. Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol. Biol. Rep. 5:387–405; 1987.

    CAS  Google Scholar 

  • Jefferson, R. A.; Burgess, S. M.; Hirsh, D. β-Glucuronidase from Escherichia coli as a gene-fusion marker. Proc. Natl Acad. Sci. USA 83:8447–8451; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Jelesko, J. G.; Jenkins, S. M.; Rodriguez-Cincepcion, M.; Gruissem, W. Regulation of tomato HMG1 during cell proliferation and growth. Planta 208:310–318; 1999.

    Article  CAS  Google Scholar 

  • Joao, K. H. L.; Brown, T. A. Enhanced transformation of tomato cocultivated with Agrobacterium tumefaciens C58C1Rif::pGSFR1161 in the presence of acetosyrengone. Plant Cell Rep. 12:422–425; 1993.

    Article  CAS  Google Scholar 

  • Kosugi, S.; Ohashi, Y.; Nakajima, K.; Arai, Y. An improved assay for β-glucoronidase in transformed cells: methanol almost completely suppresses a putative endogenous β-glucoronidase activity. Plant Sci. 70:133–140; 1990.

    Article  CAS  Google Scholar 

  • Krasnyanski, S.; May, R. A.; Loskutov, A.; Sink, K. S. Transformation of the limonene synthase gene into peppermint (Mentha piperita L.) and preliminary studies on the essential oil profiles of single transgenic plants. Theor. Appl. Genet. 99:676–682; 1999.

    Article  CAS  Google Scholar 

  • Ling, H.-Q.; Kriseleit, D.; Ganan, M. W. Effect of ticarcillin/potassium clavulanate on callus growth and shoot regeneration in Agrobacterium-mediated transformation of tomato (Lycopersicon esculentum). Plant Cell Rep. 17:843–847; 1998.

    Article  CAS  Google Scholar 

  • Liu, T.-H.A.; Stephens, L. C.; Hannapel, D. J. Transformation of Solanum brevidens using Agrobacterium tumefaciens. Plant Cell Rep. 15:196–199; 1995.

    Article  Google Scholar 

  • McCormick, S.; Niederrneyer, J.; Fry, J.; Barnason, A.; Horsch, R.; Fraley, R. Leaf disc transformation of cultivated tomato (Lycopersicon esculentum) using Agrobacterium tumefaciens. Plant Cell Rep. 5:81–84; 1986.

    Article  CAS  Google Scholar 

  • Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473–479; 1962.

    Article  CAS  Google Scholar 

  • Nicholass, F. J.; Smith, C. J. S.; Schuch, W.; Bird, C. R.; Grierson, D. High levels of ripening-specific reporter gene expression directed by tomato fruit polygalacturonase gene-flanking regions. Plant Mol. Biol. 28:423–435; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Pawlowski, W. P.; Somers, D. A. Transgene inheritance in plants genetically engineered by microprojectile bombardment. Mol. Biotechnol. 6:17–30; 1996.

    PubMed  CAS  Google Scholar 

  • Sambrook, J.; Fritsch, E. F.; Maniatis, T. Molecular cloning: a laboratory manual, 2nd edn, vol. 2. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1989.

    Google Scholar 

  • Sandhu, J. S.; Krasnyanski, S. F.; Osadjan, M. D.; Domier, L. L.; Korban, S. S.; Buetow, D. E. Oral immunization of mice with transgenic tomato fruit expressing respiratory syncytial virus-F protein induces a systemic immune response. Transgenic Res. 9:127–135; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Sandhu, J. S.; Osadjan, M. D.; Krasnyanski, S. F.; Domier, L. L.; Korban, S. S.; Buetow, D. E. Enhanced expression of the human respiratory syncytial virus-F gene in apple protoplasts. Plant Cell Rep. 18:394–397; 1999.

    Article  CAS  Google Scholar 

  • Schnurr, J. A.; Guerra, D. J. The CaMV-35S promoter is sensitive to shortened photoperiod in transgenic tobacco. Plant Cell Rep. 19:279–282; 2000.

    Article  CAS  Google Scholar 

  • Serres, R.; McCown, B.; Zeldin, E. Detectable β-glucuronidase activity in transgenic cranberry is affected by endogenous inhibitors and plant development. Plant Cell Rep. 16:641–646; 1997.

    CAS  Google Scholar 

  • Van Eck, J. M.; Blowers, A. D.; Earle, E. D. Stable transformation of tomato cell cultures after bombardment with plasmid and YAC DNA. Plant Cell Rep. 14:299–304; 1995.

    Article  Google Scholar 

  • Van Haaren, M. J. J.; Houck, C. M. A functional map of the fruit-specific promoter of the tomato 2A11 gene. Plant Mol. Biol. 21:625–640; 1993.

    Article  PubMed  Google Scholar 

  • Van Roekel, J. S. C.; Damm, B.; Melchers, L. S.; Hoekema, A. Factors influencing transformation frequency of tomato (Lycopersicon esculentum). Plant Cell Rep. 12:644–647; 1993.

    Article  Google Scholar 

  • Warkentin, T. D.; Jordan, M. C.; Hobbs, S. L. A. Effect of promoter-leader sequence on transient reporter gene expression in particle bombardment pea (Pisum sativum L.) tissues. Plant Sci. 87:171–177; 1992.

    Article  CAS  Google Scholar 

  • Xu, R.; Goldman, S.; Coupe, S.; Deikman, J. Ethylene control of E4 transcription during tomato fruit ripening involves two cooperative cis elements. Plant Mol. Biol. 31:1117–1127; 1996.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Schuyler S. Korban.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krasnyanski, S.F., Sandhu, J., Domier, L.L. et al. Effect of an enhanced CaMV 35S promoter and a fruit-specific promoter on uida gene expression in transgenic tomato plants. In Vitro Cell.Dev.Biol.-Plant 37, 427–433 (2001). https://doi.org/10.1007/s11627-001-0075-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-001-0075-1

Key words

Navigation