Skip to main content

Advertisement

Log in

Scale-up of transgenic tobacco cells that express intimin of enterohemorrhagic Escherichia coli O157:H7 for use as a transitional platform for an oral cattle vaccine

  • Molecular Farming/Metabolic Engineering/Secondary Metabolism
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Intimin is the primary adhesin protein of enterohemorrhagic Escherichia coli O157:H7, a pathogen carried by cattle and transmitted to humans via contaminated food and water. This work describes the rapid production of 1.3 kg dry weight of transgenic tobacco cells expressing the C-terminal 261 amino acids of intimin (Int261) for subsequent oral vaccine testing to reduce cattle colonization by E. coli O157:H7. Both a stirred-tank bioreactor (60 L) and a less capital-intensive oxygenated carboy culture were shown feasible for generating this scale of transgenic plant tissue culture biomass. Antibiotic selection pressure was not required during scale-up to maintain Int261 expression over the 13-wk culture period. Extended medium autoclave times of up to 90 min used for bioreactor sterilization had only minimal impact on nutrient uptake, culture growth, and intimin expression. Plant tissue was transformed, produced in vitro, and available for feeding studies in a fraction of the time required to develop and grow transgenic plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Bailey LA, Hatton D, Field R, Dickson AJ (2012) Determination of Chinese hamster ovary cell line stability and recombinant antibody expression during long-term culture. Biotechnol Bioeng 109:2093–2103. doi:10.1002/bit.24485

    Article  CAS  PubMed  Google Scholar 

  • Christou P (1992) Genetic transformation of crop plants using microprojectile bombardment. Plant J 2:275–281

    Article  CAS  Google Scholar 

  • Curtis WR (1999) Achieving economic feasibility for moderate-value food and flavor additives: a perspective on productivity and proposal for production technology cost reduction. In: Fu TJ, Singh G, Curtis WR (eds) Plant cell and tissue culture for the production of food ingredients. Kluwer Academic/Plenum Publishers, New York, pp 225–236

    Chapter  Google Scholar 

  • Curtis WR (2001) Method and apparatus for aseptic growth or processing of biomass. US Pat. 6,245,555 267

  • Curtis WR, Emery AH (1993) Plant cell suspension culture rheology. Biotechnol Bioeng 42:520–526. doi:10.1002/bit.260420416

    Article  CAS  PubMed  Google Scholar 

  • Curtis WR, Carvalho EB, Tescione LD (2001) Advances and challenges in bioreactor design for the production of chemicals from plant tissue culture. Acta Horticult 560:247–253

    CAS  Google Scholar 

  • D’Aoust MA, Couture MMJ, Charland N, Trépanier S, Landry N, Ors F, Vézina LP (2010) The production of hemagglutinin-based virus-like particles in plants: a rapid, efficient and safe response to pandemic influenza. Plant Biotechnol J 8:607–619. doi:10.1111/j.1467-7652.2009.00496.x

    Article  PubMed  Google Scholar 

  • Dean-Nystrom EA, Bosworth BT, Moon HW, O’Brien AD (1998) Escherichia coli O157:H7 requires intimin for enteropathogenicity in calves. Infect Immun 66:4560–4563

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dean-Nystrom EA, Gansheroff LJ, Mills M, Moon HW, O’Brien AD (2002) Vaccination of pregnant dams with intimin O157 protects suckling piglets from Escherichia coli O157: H7 infection. Infect Immun 70:2414–2418. doi:10.1128/IAI.70.5.2414

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gansheroff LJ, Wachtel MR, O’Brien AD (1999) Decreased adherence of enterohemorrhagic Escherichia coli to HEp-2 cells in the presence of antibodies that recognize the C-terminal region of intimin. Infect Immun 67:6409–6417

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hsiao T, Bacani F, Carvalho E, Curtis W (1999) Development of a low capital investment reactor system: application for plant cell suspension culture. Biotechnol Prog 15:114–122. doi:10.1021/bp980103+

    Article  CAS  PubMed  Google Scholar 

  • Judge NA, Mason HS, O’Brien AD (2004) Plant cell-based intimin vaccine given orally to mice primed with intimin reduces time of Escherichia coli O157: H7 shedding in feces. Infect Immun 72:168–175. doi:10.1128/IAI.72.1.168

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kieran PM (2001) Bioreactor design for plant cell suspension cultures. Princ Multiph React Des 391–426

  • Kirchhoff J, Raven N, Boes A, Roberts JL, Russell S, Treffenfeldt W, Fischer R, Schinkel H, Schiermeyer A, Schillberg S (2012) Monoclonal tobacco cell lines with enhanced recombinant protein yields can be generated from heterogeneous cell suspension cultures by flow sorting. Plant Biotechnol J 10:936–944. doi:10.1111/j.1467-7652.2012.00722.x

    Article  CAS  PubMed  Google Scholar 

  • McKee ML, O’Brien AD (1996) Truncated enterohemorrhagic Escherichia coli (EHEC) O157:H7 intimin (EaeA) fusion proteins promote adherence of EHEC strains to HEp-2 cells. Infect Immun 64:2225–2233

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mead PS, Slutsker L, Dietz V, McCaig LF, Bresee JS, Shapiro C, Griffin PM, Tauxe RV (1999) Food-related illness and death in the United States. Emerg Infect Dis 5:607–625. doi:10.3201/eid0506.990624

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nickell LG, Tulecke W (1960) Submerged growth of cells of higher plants. J Biochem Microbiol Technol Eng 11:287–297. doi:10.1002/jbmte.390020305

    Article  Google Scholar 

  • O’Neill KM, Larsen JS, Curtis WR (2008) Scale-up of Agrobacterium-mediated transient protein expression in bioreactor-grown Nicotiana glutinosa plant cell suspension culture. Biotechnol Prog 24:372–376. doi:10.1021/bp0703127

    Article  PubMed  Google Scholar 

  • Ramakrishnan D, Luyk D, Curtis WR (1999) Monitoring biomass in root culture systems. Biotechnol Bioeng 62:711–721. doi:10.1002/(SICI)1097-0290(19990320)62:6<711::AID-BIT10>3.0.CO;2-0

    Article  CAS  PubMed  Google Scholar 

  • Shuler ML, Hirasuna TJ, Prince CL, Bringi V (1990) Bioreactor considerations for producing flavors and pigments from plant tissue culture. In: Schwartzberg HG, Rao MA (eds) Biotechnology and food process engineering. Marcel Dekker, Inc., New York, pp 45–65

    Google Scholar 

  • Singh V (1999) Disposable bioreactor for cell culture using wave-induced agitation. Cytotechnology 30:149–158. doi:10.1023/A:1008025016272

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Singh G, Curtis WR (1994a) Reactor design for plant cell suspension culture. In: Shargool PD, Ngo TT (eds) Biotechnological applications of plant cultures. CRC Press, Boca Raton, pp 153–184

    Google Scholar 

  • Singh G, Curtis WR (1994b) Growth of cell suspensions and hairy roots of Hyoscyamus muticus on different carbon sources. Plant Physiol (Life Sci Adv) 13:163–168

  • Sojikul P, Buehner N, Mason HS (2003) A plant signal peptide-hepatitis B surface antigen fusion protein with enhanced stability and immunogenicity expressed in plant cells. Proc Natl Acad Sci U S A 100:2209–2214. doi:10.1073/pnas.0438037100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Streatfield SJ (2006) Mucosal immunization using recombinant plant-based oral vaccines. Methods 38:150–157. doi:10.1016/j.ymeth.2005.09.013

    Article  CAS  PubMed  Google Scholar 

  • Su WW, He BJ, Liang H, Sun S (1996) A perfusion air-lift bioreactor for high density plant cell cultivation and secreted protein production. J Biotechnol 50:225–233. doi:10.1016/0168-1656(96)01568-4

    Article  Google Scholar 

  • Van der Linde K (1999) Improved bacteriological surveillance of haemodialysis fluids: a comparison between Tryptic soy agar and Reasoner’s 2A media. Nephrol Dial Transplant 14:2433–2437. doi:10.1093/ndt/14.10.2433

    Article  PubMed  Google Scholar 

  • Wirz H, Sauer-Budge AF, Briggs J, Sharpe A, Shu S, Sharon A (2012) Automated production of plant-based vaccines and pharmaceuticals. J Lab Autom 17:449–457. doi:10.1177/2211068212460037

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Aaron Raudabaugh and Mathew Murray for their assistance in carrying out the bioreactor runs, Brandon Curtis for the execution of the autoclaved medium experiment and general laboratory assistance, and Sergio Florez for the critical review of the manuscript. A.M.S. acknowledges summer research support from the Penn State’s Life Science Consortium, which provided support toward completion of an honors thesis in the Schreyer’s University Scholars Program (Growth of transgenic tobacco cell cultures for calf vaccination against pathogenic Escherichia coli, The Pennsylvania State University, BS Thesis, 50 p., May 2004). W.R.C. would like to acknowledge the National Science Foundation grant # BCS-0003926 and GOALI program, as well as grant # CBET-1035072, which has provided time to complete the publication process. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. A.O.B. acknowledges financial support from the National Institutes of Health (grant # AI 20148–20), and the American Meat Institute Foundation. Additionally, we thank the Boyce Thompson Institute for Plant Research (Ithaca, NY) for providing the NT-1 cells and the training N.A.J. received in plant cell transformation methods.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wayne R. Curtis.

Additional information

John Finer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Neill, K.M., Schilthuis, A.M., Leiter, C.A. et al. Scale-up of transgenic tobacco cells that express intimin of enterohemorrhagic Escherichia coli O157:H7 for use as a transitional platform for an oral cattle vaccine. In Vitro Cell.Dev.Biol.-Plant 51, 315–323 (2015). https://doi.org/10.1007/s11627-015-9673-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-015-9673-1

Keywords

Navigation