Skip to main content
Log in

Assessment of agri-spillways as a soil erosion protection measure in Mediterranean sloping vineyards

  • Published:
Journal of Mountain Science Aims and scope Submit manuscript

Abstract

Suitable vineyard soils enhance soil stability and biodiversity which in turn protects roots against erosion and nutrient losses. There is a lack of information related to inexpensive and suitable methods and tools to protect the soil in Mediterranean sloping vineyards (>25° of slope inclination). In the vineyards of the Montes de Málaga (southern Spain), a sustainable land management practice that controls soil erosion is actually achieved by tilling rills in the down-slope direction to canalize water and sediments. Because of their design and use, we call them agri-spillways. In this research, we assessed two agri-spillways (between 10 m and 15 m length, and slopes between 25.8° and 35°) by performing runoff experiments under extreme conditions (a motor driven pump that discharged water flows up to 1.33 l s-1 for 12 to 15 minutes: ≈1000 l). The final results showed: i) a great capacity by these rills to canalize large amounts of water and sediments; and, ii) higher water flow speeds (between 0.16 m s-1 and 0.28 m s-1) and sediment concentration rates (up to 1538.6 g l-1) than typically found in other Mediterranean areas and land uses (such as badlands, rangelands or extensive crops of olives and almonds). The speed of water flow and the sediment concentration were much higher in the shorter and steeper rill. We concluded that agri-spillways, given correct planning and maintenance, can be a potential solution as an inexpensive method to protect the soil in sloping Mediterranean vineyards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bertalan L, Tóth CA, Szabó G, et al. (2016) Confirmation of a theory: reconstruction of an alluvial plain development in a flume experiment. Erdkunde 70: 271–285. DOI: 10.3112/erdkunde.2016.03.05

    Article  Google Scholar 

  • Biddoccu M, Ferraris S. Opsi F, et al (2016) Long-term monitoring of soil management effects on runoff and soil erosion in sloping vineyards in Alto Monferrato (North-West Italy). Soil & Tillage Research 155: 176–189. DOI: 10.1016/j.still. 2015.07.005

    Article  Google Scholar 

  • Blavet D, De Noni G, Le Bissonnais Y, et al. (2009) Effect of land use and management on the early stages of soil water erosion in French Mediterranean vineyards. Soil & Tillage Research 106: 124–136. DOI: 10.1016/j.still.2009.04.010

    Article  Google Scholar 

  • Bogunovic I, Pereira P, Brevik EC (2017) Spatial distribution of soil chemical properties in an organic farm in Croatia. Sciences of the Total Environment 584: 535–545. DOI: 10.1016/j.scitotenv.2017.01.062

    Article  Google Scholar 

  • Bryan RB (2000) Soil erodibility and processes of water erosion on hillslope. Geomorphology 32: 385–415. DOI: 10.1016/S0169-555X(99)00105-1

    Article  Google Scholar 

  • Buczko U, Bens O, Hüttl RF (2006) Tillage effects on hydraulic properties and macroporosity in silty and sandy soils. Soil Sciences Society of America Journal 70(6): 1998–2007. DOI: 10.2136/sssaj2006.0046

    Article  Google Scholar 

  • Cerdà A (1999) Parent material and vegetation affect soil erosion in Eastern Spain. Soil Sciences Society of America Journal 63(2): 362–368. DOI: 10.2136/sssaj1999.0361599500 6300 020014x

    Article  Google Scholar 

  • Cerdà A, Giménez Morera A, García Orenes F, et al. (2014) The impact of abandonment of traditional flood irrigated citrus orchards on soil infiltration and organic matter. In: Arnáez J, González-Sampériz P, Lasanta T, et al. (eds). Geoecología, cambio ambiental y paisaje: homenaje al profesor José María García Ruiz. Instituto Pirenaico de Ecología, Zaragoza. pp 267–276

    Google Scholar 

  • Cerdan O, Govers G, Le Bissonnais Y,et al. (2010) Rates and spatial variations of soil erosion in Europe: A study based on erosion plot data. Geomorphology 122: 167–177. DOI: 10.1016/j.geomorph.2010.06.011

    Article  Google Scholar 

  • Chevigny E, Quiquerez A, Petit C, et al. (2014) Lithology, landscape structure and management practice changes: Key factors patterning vineyard soil erosion at metre-scale spatial resolution. Catena 121: 354–364. DOI: 10.1016/j.catena.2014. 05.022

    Article  Google Scholar 

  • Dabney SM, Yoder DC, Ferruzzi GG (2014) Forage Harvest Representation in RUSLE2. Agronomy Journal 106: 151–167. DOI: 10.2134/agronj2013.0059

    Article  Google Scholar 

  • Dabney SM, Yoder DC, Vieira DAN (2012) The application of the Revised Universal Soil Loss Equation, Version 2, to evaluate the impacts of alternative climate change scenarios on runoff and sediment yield. Journal of Soil Water Conservation 67(5):343–353. DOI: 10.2489/jswc.67.5.343

    Article  Google Scholar 

  • Davies BE (1974) Loss-on-ignition as an estimate of soil organic matter. Soil Sciences Society of America Journal 38(1): 150–151. DOI: 10.2136/sssaj1974.03615995003800010046x

    Article  Google Scholar 

  • Fox DM, Bryan RB (2000) The relationship of soil loss by interrill erosion to slope gradient. Catena 38(3): 211–222. DOI: 10.1016/S0341-8162(99)00072-7

    Article  Google Scholar 

  • Galati A, Gristina L, Crescimanno M, et al. (2015) Towards More Efficient Incentives for Agri-environment Measures in Degraded and Eroded Vineyards. Land Degradation & Development 26: 557–564. DOI: 10.1002/ldr.2389

    Article  Google Scholar 

  • García-Díaz A, Allas RB, Gristina L, et al. (2016) Carbon input threshold for soil carbon budget optimization in eroding vineyards. Geoderma 271: 144–149. DOI: 10.1016/j.geoderma. 2016.02.020

    Article  Google Scholar 

  • García-Díaz A, Bienes R, Sastre B, et al. (2017) Nitrogen losses in vineyards under different types of soil groundcover. A field runoff simulator approach in central Spain. Agriculture, Ecosystems & Environments 236: 256–267. DOI: 10.1016/j.agee.2016.12.013

    Article  Google Scholar 

  • Giménez-Morera A, Ruiz Sinoga JD, Cerdà A (2010) The impact of cotton geotextiles on soil and water losses from Mediterranean rainfed agricultural land. Land Degradation & Development 21: 210–217. DOI: 10.1002/ldr.971

    Article  Google Scholar 

  • Hacisalihoglu S (2007) Determination of soil erosion in a steep hill slope with different land-use types: a case study in Mertesdorf (Ruwertal/Germany). Journal of Environmental Biology 28: 433–438

    Google Scholar 

  • Hänsel P, Schindewolf M, Eltner A, et al. (2016) Feasibility of high-resolution soil erosion measurements by means of rainfall simulations and SfM photogrammetry. Hydrology 3:38. DOI: 10.3390/hydrology3040038

    Article  Google Scholar 

  • Jones GV, White MA, Cooper OR, et al. (2005) Climate change and global wine quality. Climate Change 73: 319–343. DOI: 10.1007/s10584-005-4704-2

    Article  Google Scholar 

  • Katebikord A, Darvishan AK, Alavi SJ Changeability of soil erosion variables in small field plots from different rainfall durations with constant intensity. Journal of Africa Earth Sciences In press. DOI: 10.1016/j.jafrearsci.2017.02.026

  • Khaledian Y, Kiani F, Ebrahimi S, et al. (2017) Assessment and monitoring of soil degradation during land use change using multivariate analysis. Land Degradation & Development 28: 128–141. DOI: 10.1002/ldr.2541

    Article  Google Scholar 

  • Llorens J, Gil E, Llop J, et al. (2011) Georeferenced LiDAR 3D vine plantation map generation. Sensors 11: 6237–6256. DOI: 10.3390/s110606237

    Article  Google Scholar 

  • López-Piñeiro A, Muñoz A, Zamora E, et al. (2013) Influence of the management regime and phenological state of the vines on the physicochemical properties and the seasonal fluctuations of the microorganisms in a vineyard soil under semi-arid conditions. Soil & Tillage Research 126: 119–126. DOI: 10.1016/j.still.2012.09.007

    Article  Google Scholar 

  • López-Vicente M, Poesen J, Navas A, et al. (2013) Predicting runoff and sediment connectivity and soil erosion by water for different land use scenarios in the Spanish Pre-Pyrenees. Catena 102: 62–73.DOI: 10.1016/j.catena.2011.01.001

    Article  Google Scholar 

  • Lorenzo MN, Taboada JJ, Lorenzo JF, et al. (2012) Influence of climate on grape production and wine quality in the Rías Baixas, north-western Spain. Regional Environmental Change 13: 887–896. DOI: 10.1007/s10113-012-0387-1

    Article  Google Scholar 

  • Marques MJ, Bienes R, Cuadrado J, et al. (2015) Analysing perceptions attitudes and responses of winegrowers about sustainable land management in Central Spain. Land Degradation & Development 26: 458–467. DOI: 10.1002/ldr.2355

    Article  Google Scholar 

  • Martínez-Casasnovas JA, Sánchez-Bosch I (2000) Impact assessment of changes in land use/conservation practices on soil erosion in the Penedès-Anoia vineyard region (NE Spain). Soil & Tillage Research 57: 101–106. DOI: 10.1016/S0167-1987(00)00142-2

    Article  Google Scholar 

  • Martínez-Casasnovas JA, Antón-Fernández C, Ramos MC (2003) Sediment production in large gullies of the Mediterranean area (NE Spain) from high-resolution digital elevation models and geographical information systems analysis. Earth Surface Process & Landforms 28: 443–456. DOI: 10.1002/esp.451

    Article  Google Scholar 

  • Martínez-Murillo JF, Nadal-Romero E, Regüés D, et al. (2013) Soil erosion and hydrology of the western Mediterranean badlands throughout rainfall simulation experiments: A review. Catena 106: 101–112. DOI: 10.1016/j.catena.2012.06.001

    Article  Google Scholar 

  • Marzolff I, Poesen J (2009) The potential of 3D gully monitoring with GIS using high-resolution aerial photography and a digital photogrammetry system. Geomorphology 111: 48–60. DOI: 10.1016/j.geomorph.2008.05.047

    Article  Google Scholar 

  • Masselink RJH, Keesstra SD, Temme AJAM, et al. (2016) Modelling Discharge and Sediment Yield at Catchment Scale Using Connectivity Components. Land Degradation & Development 27: 933–945. DOI: 10.1002/ldr.2512

    Article  Google Scholar 

  • Morvan X, Naisse C, Malam Issa O, et al. (2014) Effect of ground-cover type on surface runoff and subsequent soil erosion in Champagne vineyards in France. Soil & Use Management 30: 372–381. DOI: 10.1111/sum.12129

    Article  Google Scholar 

  • Nadal-Romero E, Martínez-Murillo JF, Vanmaercke M, et al. (2011) Scale-dependency of sediment yield from badland areas in Mediterranean environments. Progress in Physical Geography 381–386. DOI: 10.1177/0309133311400330

    Google Scholar 

  • Nadal-Romero E, Petrlic K, Verachtert E, et al. (2014) Effects of slope angle and aspect on plant cover and species richness in a humid Mediterranean badland. Earth Surface Process & Landforms 39: 1705–1716. DOI: 10.1002/esp.3549

    Article  Google Scholar 

  • Nasri B, Fouché O, Torri D (2015) Coupling published pedotransfer functions for the estimation of bulk density and saturated hydraulic conductivity in stony soils. Catena 131: 99–108. DOI: 10.1016/j.catena.2015.03.018

    Article  Google Scholar 

  • Novara A, Gristina L, Guaitoli F, et al. (2013) Managing soil nitrate with cover crops and buffer strips in Sicilian vineyards. Solid Earth 4: 255–262. DOI: 10.5194/se-4-255-2013

    Article  Google Scholar 

  • Novara A, Gristina L, Saladino SS, et al. (2011) Soil erosion assessment on tillage and alternative soil managements in a Sicilian vineyard. Soil & Tillage Research 117: 140–147. DOI: 10.1016/j.still.2011.09.007

    Article  Google Scholar 

  • Ola A, Dodd IC, Quinton JN (2015) Can we manipulate root system architecture to control soil erosion? SOIL 1: 603–612. DOI:10.5194/soil-1-603-2015

    Article  Google Scholar 

  • Pacheco E, Farguell J, Úbeda X, et al. (2011) Runoff and sediment production in a mediterranean basin under two different land use. Cuaternario & Geomorfología 25: 103–114

    Google Scholar 

  • Poesen J, Nachtergaele J, Verstraeten G, et al. (2003) Gully erosion and environmental change: importance and research needs. Catena 50: 91–133. DOI: 10.1016/S0341-8162(02)00 143-1

    Article  Google Scholar 

  • Prosdocimi M, Cerdà A, Tarolli P (2016a) Soil water erosion on Mediterranean vineyards: A review. Catena 141: 1–21. DOI: 10.1016/j.catena.2016.02.010

    Article  Google Scholar 

  • Prosdocimi M, Jordán A, Tarolli P, et al. (2016b) The immediate effectiveness of barley straw mulch in reducing soil erodibility and surface runoff generation in Mediterranean vineyards. Sciences of the Total Environment 547: 323–330. DOI: 10.1016/j.scitotenv.2015.12.076

    Article  Google Scholar 

  • Prosdocimi M, Burguet M, Di Prima S, et al. (2017) Rainfall simulation and Structure-from-Motion photogrammetry for the analysis of soil water erosion in Mediterranean vineyards. Sciences of the Total Environment 574: 204–215. DOI: 10.1016/j.scitotenv.2016.09.036

    Article  Google Scholar 

  • Raclot D, Le Bissonnais Y, Louchart X, et al. (2009) Soil tillage and scale effects on erosion from fields to catchment in a Mediterranean vineyard area. Agriculture Ecosystems & Environments 134: 201–210. DOI: 10.1016/j.agee.2009.06.019

    Article  Google Scholar 

  • Ramos MC, Nacci S, Pla I (2000) Soil sealing and its influence on erosion rates for some soils in the Mediterranean area. Soil Sciences 165: 398–403.

    Article  Google Scholar 

  • Ramos MC, Martínez-Casasnovas JA (2007) Soil loss and soil water content affected by land levelling in Penedès vineyards, NE Spain. Catena 71: 210–217. DOI: 10.1016/j.catena.2007. 03.001

    Article  Google Scholar 

  • Ramos MC, Benito C, Martínez-Casasnovas JA (2015) Simulating soil conservation measures to control soil and nutrient losses in a small, vineyard dominated, basin. Agriculture Ecosystems & Environments 213: 194–208. DOI: 10.1016/j.agee.2015. 08.004

    Article  Google Scholar 

  • Recha CW, Mukopi MN, Otieno JO (2015) Socio-economic determinants of adoption of rainwater harvesting and conservation techniques in semi-arid Tharaka sub-county, Kenya. Land Degradation & Development 26: 765–773. DOI: 10.1002/ldr.2326

    Article  Google Scholar 

  • Rodrigo Comino J, Iserloh T, Morvan X, et al. (2016b) Soil erosion processes in European vineyards: A qualitative comparison of rainfall simulation measurements in Germany, Spain and France. Hydrology 3:6. DOI: 10.3390/hydrology30 10006

    Article  Google Scholar 

  • Rodrigo Comino J, Ruiz Sinoga JD, Senciales González JM, et al. (2016c) High variability of soil erosion and hydrological processes in Mediterranean hillslope vineyards (Montes de Málaga, Spain). Catena 145: 274–284. DOI: 10.1016/j.catena. 2016.06.012

    Article  Google Scholar 

  • Rodrigo Comino J, Senciales JM, Ramos MC, et al. (2017) Understanding soil erosion processes in Mediterranean sloping vineyards (Montes de Málaga, Spain). Geoderma 296: 47–59. DOI: 10.1016/j.geoderma.2017.02.021

    Article  Google Scholar 

  • Rosell RA, Gasparoni JC, Galantini JA (2001) Soil organic matter evaluation. In: Lal R, Kimble J, Follet R, Stewart B (eds) Assessment methods for soil carbon. Lewis Publishers, USA, pp 311–322

    Google Scholar 

  • Ruiz Sinoga JD (1987) Influencia del medio físico sobre el viñedo en las Cordilleras Béticas litorales (Influence of the physical environment on the vineyards of Las Cordilleras Béticas Litorales). Anales de Geografía 315–323. (In Spanish)

    Google Scholar 

  • Ruiz Sinoga JD, Garcia Marin R, Martinez Murillo JF, et al. (2011) Precipitation dynamics in southern Spain: trends and cycles. International Journal of Climatology 31: 2281–2289. DOI: 10.1002/joc.2235

    Article  Google Scholar 

  • Ruiz Sinoga JD, Garcia Marín R, Martínez-Murillo JF, et al. (2010) Pluviometric gradient incidence and the hydrological behaviour of soil surface components (southern Spain). Land Degradation & Development 21: 484–495. DOI: 10.1002/ldr.994

    Google Scholar 

  • Ruiz Sinoga JD, Martinez Murillo JF (2009) Effects of soil surface components on soil hydrological behaviour in a dry Mediterranean environment (Southern Spain). Geomorphology 108: 234–245. DOI:10.1016/j.geomorph.2009. 01.012

    Article  Google Scholar 

  • Sadeghi SH, Kiani Harchegani M, Asadi H (2017) Variability of particle size distributions of upward/downward splashed materials in different rainfall intensities and slopes. Geoderma 290: 100–106. DOI: 10.1016/j.geoderma.2016.12. 007

    Article  Google Scholar 

  • Salomé C, Coll P, Lardo E, et al. (2016) The soil quality concept as a framework to assess management practices in vulnerable agroecosystems: A case study in Mediterranean vineyards. Ecological Indicators 61, 2: 456–465. DOI: 10.1016/j.ecolind. 2015.09.047

    Article  Google Scholar 

  • Sastre B, Barbero-Sierra C, Bienes R, et al. (2016) Soil loss in an olive grove in Central Spain under cover crops and tillage treatments, and farmer perceptions. Journal of Soils Sediments 1–16. DOI: 10.1007/s11368-016-1589-9

    Google Scholar 

  • Senciales González JM, Ruiz Sinoga JD (2013) Análisis espaciotemporal de las lluvias torrenciales en la ciudad de Málaga (Spatio-temporal analysis of the heavy storm in the Málaga city). Boletin de Asociación de Geógrafos Españoles 7–24. (In Spanish)

    Google Scholar 

  • Shi ZH, Fang NF, Wu FZ, et al. (2012) Soil erosion processes and sediment sorting associated with transport mechanisms on steep slopes. Journal of Hydrology 454-455: 123–130. DOI: 10.1016/j.jhydrol.2012.06.004

    Article  Google Scholar 

  • Shi ZH, Yan FL, Li L, et al. (2010) Interrill erosion from disturbed and undisturbed samples in relation to topsoil aggregate stability in red soils from subtropical China. Catena 81: 240–248. DOI: 10.1016/j.catena.2010.04.007

    Article  Google Scholar 

  • Tarolli P, Sofia G, Calligaro S, et al. (2015) Vineyards in Terraced Landscapes: New Opportunities from Lidar Data. Land Degradation & Development 26: 92–102. DOI: 10.1002/ldr.2311

    Article  Google Scholar 

  • Taylor JA, Coulouma G, Lagacherie P, et al. (2009) Mapping soil units within a vineyard using statistics associated with high-resolution apparent soil electrical conductivity data and factorial discriminant analysis. Geoderma 153: 278–284. DOI: 10.1016/j.geoderma.2009.08.014

    Article  Google Scholar 

  • van Leeuwen C, Tregoat O, Choné X, et al. (2009) Vine water status is a key factor in grape ripening and vintage quality for red bordeaux wine. How can it be assessed for vineyard management purposes? Journal international des sciences de la vigne et du vin 43: 121–134

    Google Scholar 

  • Wirtz S, Seeger M, Ries JB (2010) The rill experiment as a method to approach a quantification of rill erosion process activity. Zeitschrift für Geomorphologie NF 54: 47–64

    Article  Google Scholar 

  • Wirtz S, Seeger M, Ries JB (2012) Field experiments for understanding and quantification of rill erosion processes. Catena 91: 21–34. DOI: 10.1016/j.catena.2010.12.002

    Article  Google Scholar 

  • Wirtz S, Seeger M, Zell A, et al. (2013) Applicability of different hydraulic parameters to describe soil detachment in eroding rills. PLoS ONE 8: 1–11. DOI: 10.1371/journal.pone.0064861

    Article  Google Scholar 

  • Xiao L, Hu Y, Greenwood P, et al. (2015) A Combined Raindrop Aggregate Destruction Test-Settling Tube (RADT-ST) Approach to Identify the Settling Velocity of Sediment. Hydrology 2:176. DOI: 10.3390/hydrology2040176

    Article  Google Scholar 

Download references

Acknowledgments

First, we acknowledge the farmer’s syndicate UPA (Unión de Pequeños Agricultores) and the wine-grower Pepe Gámez (Almáchar) for providing access to the study area. Second, we thank the students of the Bachelors course and Masters from Trier University for their hard work in the field and laboratory during the Almáchar campaign. Third, we acknowledge the geomorphology and soil laboratory technicians María Pedraza and Rubén Rojas of GSoilLab (Málaga University) for the soil analysis. Finally, we also thank the Spanish Ministry of Education, Culture and Sport of Spain for the Scholarship grant (FPU) awarded to J. Rodrigo-Comino.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Rodrigo-Comino.

Additional information

http://orcid.org/0000-0002-4823-0871

http://orcid.org/0000-0002-9299-2507

http://orcid.org/0000-0002-6004-0018

http://orcid.org/0000-0002-2303-0881

http://orcid.org/0000-0001-7128-6120

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigo-Comino, J., Wirtz, S., Brevik, E.C. et al. Assessment of agri-spillways as a soil erosion protection measure in Mediterranean sloping vineyards. J. Mt. Sci. 14, 1009–1022 (2017). https://doi.org/10.1007/s11629-016-4269-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11629-016-4269-8

Keywords

Navigation