Skip to main content
Log in

Liquid phase evaporation on the normal shock wave in moist air transonic flows in nozzles

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

This paper presents a numerical analysis of the atmospheric air transonic flow through de Laval nozzles. By nature, atmospheric air always contains a certain amount of water vapor. The calculations were made using a Laval nozzle with a high expansion rate and a convergent-divergent (CD) “half-nozzle”, referred to as a transonic diffuser, with a much slower expansion rate. The calculations were performed using an in-house CFD code. The computational model made it possible to simulate the formation of the liquid phase due to spontaneous condensation of water vapor contained in moist air. The transonic flow calculations also take account of the presence of a normal shock wave in the nozzle supersonic part to analyze the effect of the liquid phase evaporation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adam S., 1996, Numerische und experimentelle Untersuchung instationaerer Duesenstroemungen mit Energiezufuhr durch homogene Kondensation, Dissertation, Fakultaet fuer Maschinenbau, Universitaet Karlsruhe

    Google Scholar 

  2. Doerffer P., Dykas S., 2005, Numerical analysis of shock induced separation delay by air humidity, Journal of Thermal Science 14 (2), 120–125

    Article  ADS  Google Scholar 

  3. Dohrmann U., 1989, Ein numerisches Verfahren zur Berechnung stationärer transsonischer Strömungen mit Energiezufuhr durch homogene Kondensation, Dissertation, Universitaet Karlsruhe, 1989

    Google Scholar 

  4. Dykas S., Wróblewski W., 2013, Two-fluid model for prediction of wet steam transonic flow, International Journal of Heat and Mass Transfer, 60, pp. 88–94

    Article  Google Scholar 

  5. Frenkel J., 1955, Kinetic Theory of Liquids, Dover, New York.

    MATH  Google Scholar 

  6. Gyarmathy G., 1969, Grundlagen einer Theorie der Nassdampfturbine, Juris Verlag, Zürich

    Google Scholar 

  7. Kantrowitz A., 1951, Nucleation in Very Rapid Vapour Expansions, Journal Chem. Phys., 19, 1097–1100

    Article  ADS  Google Scholar 

  8. Knudsen M., 1915, Annalen der Physik, Vol. 47, pp. 697–708

    Article  ADS  Google Scholar 

  9. Matsuo S., Yokoo K., Nagao J., Nishiyama Y., Setoguchi T., Kim H. D., Yu S., 2013, Numerical Study on Transonic Flow with Local Occurrence of Non-Equilibrium Condensation, Open Journal of Fluid Dynamics, 3, pp. 42–47, http://dx.doi.org/10.4236/ojfd.2013.32A007

    Article  ADS  Google Scholar 

  10. Pruppacher H.R., Klett J.D., 1980, Microphysics of Clouds and Precipitation, D. Reidel Publishing Company, Dordrecht, Boston, London.

    Google Scholar 

  11. Sajben, M., Kroutil, J.C., 1981, Effect of Initial Boundary-Layer Thickness on Transonic Diffuser Flow, AIAA Journal, Vol. 19, pp. 1386–1393

    Article  ADS  Google Scholar 

  12. Schnerr, G.H., and Dohrmann, U., 1990, Transonic flow around airfoils with relaxation and energy supply by homogeneous condensation. AIAA Journal, 28, pp. 1187–1193

    Article  ADS  Google Scholar 

  13. Schnerr G.H., Mundinger G., 1993, Similarity, drag, and lift in transonic flow with given internal heat addition, Euro. J. Mech., B/Fluids, Vol. 12, No. 5, pp. 597–611, 1993597–611

    MATH  Google Scholar 

  14. Schnerr, G.H., and Dohrmann, U., 1994, Drag and lift in non-adiabatic transonic flow. AIAA Journal, 32, pp. 101–107

    Article  ADS  Google Scholar 

  15. Wróblewski W., Dykas S., Gepert A., 2009, Steam condensing flow modelling in turbine channels, International Journal of Multiphase Flow, 35(6), pp. 498–506

    Article  Google Scholar 

Download references

Acknowledgements

The presented work was supported by the Polish National Science Centre funds within the project with nr. UMO-2014/15/B/ST8/00203.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dykas, S., Szymański, A. & Majkut, M. Liquid phase evaporation on the normal shock wave in moist air transonic flows in nozzles. J. Therm. Sci. 26, 214–222 (2017). https://doi.org/10.1007/s11630-017-0932-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-017-0932-9

Keywords

Navigation