Skip to main content

Advertisement

Log in

Effect of Nanobubble Evolution on Hydrate Process: A Review

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

As a huge reserve for potential energy, natural gas hydrates (NGHs) are attracting increasingly extra attentions, and a series of researches on gas recovery from NGHs sediments have been carried out. But the slow formation and dissociation kinetics of NGHs is a major bottleneck in the applications of NGHs technology. Previous studies have shown that nanobubbles, which formed from melt hydrates, have significant promotion effects on dissociation and reformation dynamics of gas hydrates. Nanobubbles can persist for a long time in liquids, disaccording with the standpoint of classical thermodynamic theories, thus they can participate in the hydrate process. Based on different types of hydrate systems (gas + water, gas +water +inhibitors/promoters, gas + water + hydrophilic/hydrophobic surface), the effects of nanobubble evolution on nucleation, dissociation, reformation process and “memory effect” of gas hydrates are discussed in this paper. Researches on the nanobubbles in hydrate process are also summarized and prospected in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hester K.C., Brewer P.G., Clathrate hydrates in nature. Annual Review of Marine Science, 2009, 1: 303–327.

    ADS  Google Scholar 

  2. Ripmeester J.A., Alavi S., Some current challenges in clathrate hydrate science: Nucleation, decomposition and the memory effect. Current Opinion in Solid State & Materials Science, 2016, 20(6): 344–351.

    ADS  Google Scholar 

  3. Matsukuma Y., Morinaga J., Nishimura Y., et al., Inlet configuration of a recovery system for methane hydrate using gas lift. Chemical Engineering, 2007, 33: 599–605.

    Google Scholar 

  4. Stevens J.C., Howard J.J., Baldwin B.A., Experimental hydrate formation and gas production scenarios based on CO2 sequestration. Proceedings of the 6th International Conference on Gas Hydrates, Vancouver, Canada, 2008.

    Google Scholar 

  5. Jiang X., Ding B., Wu H.Q., et al., Exploitation technology of natural gas hydrate and its influence. Gas & Heat, 2018, 38(5): 16–18.

    Google Scholar 

  6. Silva M.D., Dawe R., Towards commercial gas production from hydrate deposits. Energies, 2011, 4: 215–238.

    Google Scholar 

  7. Ljunggren S., Eriksson J.C., The lifetime of a colloid-sized gas bubble in water and the cause of the hydrophobic attraction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1997, 129-130: 151–155.

    Google Scholar 

  8. Bagherzadeh S.A., Alavi S., Ripmeester J., et al., Formation of methane nano-bubbles during hydrate decomposition and their effect on hydrate growth. Journal of Chemical Physics, 2015, 142(21): 214701.

    ADS  Google Scholar 

  9. Bagherzadeh S.A., Alavi S., Ripmeester J.A., et al., Evolution of methane during gas hydrate dissociation. Fluid Phase Equilibria, 2013, 358: 114–120.

    Google Scholar 

  10. Yagasaki T., Matsumoto M., Andoh Y., et al., Effect of bubble formation on the dissociation of methane hydrate in water: a molecular dynamics study. Journal of Physical Chemistry B, 2014, 118(7): 1900–1906.

    Google Scholar 

  11. Uchida T., Yamazaki K., Gohara K., Generation of micro- and nano-bubbles in water by dissociation of gas hydrates. Korean Journal of Chemical Engineering, 2016, 33: 1749–1755.

    Google Scholar 

  12. Harvey A.H., Lemmon E.W., Correlation for the vapor pressure of heavy water from the triple point to the critical point. Journal of Physical & Chemical Reference Data, 2002, 31: 173–181.

    ADS  Google Scholar 

  13. Zhang X.H., Quinn A., Ducker W.A., Nanobubbles at the interface between water and a hydrophobic solid. Langmuir the ACS Journal of Surfaces & Colloids, 2008, 24: 4756–4764.

    Google Scholar 

  14. Seddon J.R., Kooij E.S., Poelsema B., et al., Surface bubble nucleation stability. Physical Review Letters, 2011, 106: 262–269.

    Google Scholar 

  15. Ohgaki K., Khanh N.Q., Joden Y., et al., Physicochemical approach to nanobubble solutions. Chemical Engineering Science, 2010, 65: 1296–1300.

    Google Scholar 

  16. Weijs J.H., Seddon J.R.T., Lohse D., Diffusive shielding stabilizes bulk nanobubble clusters. Chemphyschem, 2012, 13: 2197–2204.

    Google Scholar 

  17. Ripmeester J.A., Hosseini S., Englezos P., et al., Fundamentals of Methane Hydrate Decomposition. Canadian Unconventional Resources and International Petroleum Conference, Calgary, Alberta, Canada, 2010. DOI: 10.2118/138112-MS.

    Google Scholar 

  18. Uddin M., Coombe D., Kinetics of CH4 and CO2 hydrate dissociation and gas bubble evolution via MD simulation. Journal of Physical Chemistry A, 2014, 118: 1971–1988.

    ADS  Google Scholar 

  19. Lei Y., Andrzej F., Marwen C., et al., Synchrotron X-ray computed microtomography study on gas hydrate decomposition in a sedimentary matrix. Geochemistry, Geophysics, Geosystems, 2016, 17(9): 3717–3732.

    Google Scholar 

  20. Xu C.G., Li X.S., Lv Q.N., et al., Hydrate-based CO2 (carbon dioxide) capture from IGCC (integrated gasification combined cycle) synthesis gas using bubble method with a set of visual equipment. Energy, 2012, 44: 358–366.

    Google Scholar 

  21. Sun Y., Xie G., Peng Y., et al., Stability theories of nanobubbles at solid-liquid interface: A review. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2016, 495: 176–186.

    Google Scholar 

  22. Alheshibri M., Qian J., Jéhannin M., et al., A history of nanobubbles. Langmuir the ACS Journal of Surfaces & Colloids, 2016, 32(43): 11086–11100.

    Google Scholar 

  23. Seddon J.R., Lohse D., Ducker W.A., et al., A deliberation on nanobubbles at surfaces and in bulk. Chemphyschem, 2012, 13: 2179–2187.

    Google Scholar 

  24. Craig VS.J., Very small bubbles at surfaces- the nanobubble puzzle. Soft Matter, 2010, 7: 40–48.

    ADS  Google Scholar 

  25. Parker J.L., Claesson P.M., Attard P., Bubbles, cavities, and the long-ranged attraction between hydrophobic surfaces. Journal of Physical Chemistry, 1994, 98: 8468–8480.

    Google Scholar 

  26. Ishida N., Inoue T., Minora Miyahara A., et al., Nano bubbles on a hydrophobic surface in water observed by tapping-mode atomic force microscopy. Langmuir, 2000, 16: 6377–6380.

    Google Scholar 

  27. Zhang X.H., Khan A., Ducker W.A., A nanoscale gas state. Physical Review Letters, 2007, 98(13): 136101.

    ADS  Google Scholar 

  28. Henry C.L., Parkinson L., Ralston J.R., et al., A mobile gas-water interface in electrolyte solutions. Journal of Physical Chemistry C, 2008, 112: 15094–15097.

    Google Scholar 

  29. Clift R., Grace J.R., Weber M.E., Bubbles, drops, and particles. Academic Press, Mineola, U.S.A., 1978.

    Google Scholar 

  30. Limbeek M.A.J.V., Seddon J.R.T., Surface nanobubbles as a function of gas type. Langmuir the ACS Journal of Surfaces & Colloids, 2011, 27: 8694–8699.

    Google Scholar 

  31. Brenner M.P., Lohse D., Dynamic equilibrium mechanism for surface nanobubble stabilization. Physical Review Letters, 2008, 101(21): 214505.

    ADS  Google Scholar 

  32. Yagasaki T., Matsumoto M., Andoh Y., et al., Dissociation of methane hydrate in aqueous NaCl solutions. Journal of Physical Chemistry B, 2014, 118: 11797–11804.

    Google Scholar 

  33. Yagasaki T., Matsumoto M., Tanaka H., Effects of thermodynamic inhibitors on the dissociation of methane hydrate: a molecular dynamics study. Physical Chemistry Chemical Physics, 2015, 17: 32347–32357.

    Google Scholar 

  34. English N.J., Johnson J.K., Taylor C.E., Molecular-dynamics simulations of methane hydrate dissociation. Journal of Chemical Physics, 2005, 123(24): 244503.

    ADS  Google Scholar 

  35. Vatamanu J., Kusalik P.G., Molecular insights into the heterogeneous crystal growth of Si methane hydrate. Journal of Physical Chemistry B, 2006, 110: 15896–15904.

    Google Scholar 

  36. Guo G.J., Zhang Y.G., Li M., et al., Can the dodecahedral water cluster naturally form in methane aqueous solutions? A molecular dynamics study on the hydrate nucleation mechanisms. Journal of Chemical Physics, 2008, 128(19): 1636.

    Google Scholar 

  37. Alavi S., Ripmeester J.A., Nonequilibrium adiabatic molecular dynamics simulations of methane clathrate hydrate decomposition. Journal of Chemical Physics, 2010, 132: 53–46.

    Google Scholar 

  38. Tung Y.T., Chen L.J., Chen Y.P., et al., Growth of structure I carbon dioxide hydrate from molecular dynamics simulations. Journal of Physical Chemistry C, 2011, 115(15): 7504–7515.

    Google Scholar 

  39. Bai D., Chen G., Zhang X., et al., Microsecond molecular dynamics simulations of the kinetic pathways of gas hydrate formation from solid surfaces. Langmuir the ACS Journal of Surfaces & Colloids, 2011, 27(10): 5961–5967.

    Google Scholar 

  40. Walsh M.R., Beckham G.T., Koh C.A., et al., Methane hydrate nucleation rates from molecular dynamics simulations: Effects of aqueous methane concentration, interfacial curvature, and system size. Journal of Physical Chemistry C, 2011, 115(43): 21241–21248.

    Google Scholar 

  41. Das S., Baghel V.S., Roy S., et al., A molecular dynamics study of model SI clathrate hydrates: the effect of guest size and guest-water interaction on decomposition kinetics. Physical Chemistry Chemical Physics, 2015, 17(14): 9509–9518.

    Google Scholar 

  42. Tung Y.T., Chen L.J., Chen Y.P., et al., In situ methane recovery and carbon dioxide sequestration in methane hydrates: a molecular dynamics simulation study. Journal of Physical Chemistry B, 2011, 115(51): 15295–15302.

    Google Scholar 

  43. Bagherzadeh S.A., Englezos P., Alavi S., et al., Influence of hydrated silica surfaces on interfacial water in the presence of clathrate hydrate forming gases. Journal of Physical Chemistry C, 2012, 116(47): 24907–24915.

    Google Scholar 

  44. Liu Y., Zhao L., Deng S., et al., Evolution of bubbles in decomposition and replacement process of methane hydrate. Molecular Simulation, 2017, 43: 1061–1073.

    Google Scholar 

  45. Yagaski T., Matsumoto M., Tanaka H., Effects of thermodynamic inhibitors on the dissociation of methane hydrate: a molecular dynamics study. Physical Chemistry Chemical Physics, 2015, 17: 32347–32357.

    Google Scholar 

  46. Smith D.E., Dang L.X., Computer simulations of NaCl association in polarizable water. Journal of Chemical Physics, 1994, 100(5): 3757–3766.

    ADS  Google Scholar 

  47. Wu J.Y., Chen L.J., Chen Y.P., et al., Molecular dynamics study on the nucleation of methane + tetrahydrofuran mixed guest hydrate. Physical Chemistry Chemical Physics, 2016, 18(15): 9935.

    Google Scholar 

  48. Bagherzadeh S.A., Englezos P., Alavi S., et al., Molecular modeling of the dissociation of methane hydrate in contact with a silica surface. Journal of Physical Chemistry B, 2012, 116: 3188–3197.

    Google Scholar 

  49. Lopes M.E.P., Murashov V., Tazi M., et al., Development of an empirical force field for silica. Application to the quartz-water interface. Journal of Physical Chemistry B, 2006, 110(6): 2782–2792.

    Google Scholar 

  50. He Z., Linga P., Jiang J., CH4 hydrate formation between silica and graphite surfaces: Insights from microsecond molecular dynamics simulations. Langmuir the ACS Journal of Surfaces & Colloids, 2017, 33(43): 11956–11967.

    Google Scholar 

  51. English N.J., Phelan G.M., Molecular dynamics study of thermal-driven methane hydrate dissociation. Journal of Chemical Physics, 2009, 131: 53.

    Google Scholar 

  52. Myshakin E.M., Jiang P.L., Warzinski R.P., et al., Molecular dynamics simulations of methane hydrate decomposition. Journal of Physical Chemistry A, 2009, 113: 1913–1921.

    ADS  Google Scholar 

  53. Walsh M.R., Koh C.A., Sloan E.D., et al., Microsecond simulations of spontaneous methane hydrate nucleation and growth. Science, 2009, 326: 1095–1098.

    ADS  Google Scholar 

  54. Attard P., Moody M.P., Tyrrell J.W.G., Nanobubbles: the big picture. Physica A Statistical Mechanics & Its Applications, 2002, 314: 696–705.

    ADS  Google Scholar 

  55. Parent J.S., Bishnoi P., Investigations into the nucleation behaviour of methane gas hydrates. Chemical Engineering Communications, 1996, 144: 51–64.

    Google Scholar 

  56. Bagherzadeh S.A., Englezos P., Alavi S., et al., Molecular simulation of non-equilibrium methane hydrate decomposition process. Journal of Chemical Thermodynamics, 2012, 44: 13–19.

    Google Scholar 

  57. Sujith K.S., Ramachandran C.N., Natural gas evolution in a gas hydrate melt: Effect of thermodynamic hydrate inhibitors. Journal of Physical Chemistry B, 2017, 121: 153–163.

    Google Scholar 

  58. Sujith K.S., Ramachandran C.N., Carbon dioxide induced bubble formation in a CH4-CO2-H2O ternary system: a molecular dynamics simulation study. Physical Chemistry Chemical Physics, 2016, 18: 3746–3754.

    Google Scholar 

  59. Kaur S.P., Sujith K.S., Ramachandran C.N., Formation of nanobubble and its effect on the structural ordering of water in CH4-N2-CO2-H2O mixture. Physical Chemistry Chemical Physics, 2018, 20(14): 9157–9166.

    Google Scholar 

  60. Bai D., Chen G., Zhang X., et al., Nucleation of the CO2 hydrate from three-phase contact lines. Langmuir the ACS Journal of Surfaces & Colloids, 2012, 28(20): 7730–7736.

    Google Scholar 

  61. Nguyen N.N., Nguyen A.V., Steel K.M., et al., Interfacial gas enrichment at hydrophobic surfaces and the origin of promotion of gas hydrate formation by hydrophobic solid particles. Journal of Physical Chemistry C, 2017, 121(7): 3830–3840.

    Google Scholar 

  62. Ohno L.L., Susilo R., Gordienko R., et al., Interaction of antifreeze proteins with hydrocarbon hydrates. Chemistry -AEuropean Journal, 2010, 16(34): 10409–10417.

    Google Scholar 

  63. Sowa B., Maeda N., Statistical study of the memory effect in model natural gas hydrate systems. Journal of Physical Chemistry A, 2015, 119: 10784–10790.

    ADS  Google Scholar 

  64. Knott B.C., Larue J.L., Wodtke A.M., et al., Communication: Bubbles, crystals, and laser-induced nucleation. Journal of Chemical Physics, 2011, 134(17): 171102.

    ADS  Google Scholar 

  65. Matsumoto M., Wada Y., Oonaka A., et al., Polymorph control of glycine by antisolvent crystallization using nitrogen minute-bubbles. Journal of Crystal Growth, 2013, 373: 73–77.

    ADS  Google Scholar 

  66. Temesgen T., Bui T.T., Han M., et al., Micro and nanobubble technologies as a new horizon for water-treatment techniques: A review. Advances in Colloid and Interface Science, 2017, 246: 40–51.

    Google Scholar 

  67. Terasaka K., Hirabayashi A., Nishino T., et al., Development of microbubble aerator for waste water treatment using aerobic activated sludge. Chemical Engineering Science, 2011, 66(14): 3172–3179.

    Google Scholar 

  68. Agarwal A., Ng W.J., Liu Y, Principle and applications of microbubble and nanobubble technology for water treatment. Chemo sphere 2011, 84(9): 1175–1180.

    ADS  Google Scholar 

  69. Uchida T., Yamazaki K., Gohara K., Gas nano-bubbles as nucleation acceleration in the gas-hydrate memory effect. The Journal of Physical Chemistry C, 2016, 120(47), 26620–26629.

    Google Scholar 

  70. Soare A., Dijkink R., Pascual M.R., et al., Crystal nucleation by laser-induced cavitation. Crystal Growth & Design, 2011, 11(6): 2311–2316.

    Google Scholar 

  71. Rijk D.E., S.E, Graaf V.D., et al., Bubble size in flotation thickening. Water Research, 1994, 28(2): 465–473.

    Google Scholar 

  72. Kim T.I., Kim Y.H., Han M., Development of novel oil washing process using bubble potential energy. Marine Pollution Bulletin, 2012, 64(11): 2325–2332.

    Google Scholar 

Download references

Acknowledgements

The work is supported by Innovation Development and Demonstration Project of Ocean Economy (Grant No. BHSF2017-19), National Natural Science Foundation of China (Grant No. 51776138), National Key Research and Development Plan (Grant No. 2018YFB0905103), and Tianjin Talent Development Special Support Program for High-Level Innovation and Entrepreneurship Team.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhao, L., Deng, S. et al. Effect of Nanobubble Evolution on Hydrate Process: A Review. J. Therm. Sci. 28, 948–961 (2019). https://doi.org/10.1007/s11630-019-1181-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-019-1181-x

Keywords

Navigation