Skip to main content
Log in

Prospect Evaluation of Low-GWP Refrigerants R1233zd(E) and R1336mzz(Z) Used in Solar-Driven Ejector-Vapor Compression Hybrid Refrigeration System

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

In this paper, the entrainment ratio, pump work, heat loads of heat exchangers and COPthermal were theoretically evaluated for a solar-driven ejector-vapor compression hybrid refrigeration system with R1233zd(E) and R1336mzz(Z) as the working fluids. The evaluation of the utilization potentials of R1233zd(E) and R1336mzz(Z) was presented by comparing the system performance with that of R245fa, a commonly used refrigerant in the ejector system. The results indicated that the systems with R1233zd(E) and R1336mzz(Z) had a higher entrainment ratio and lower pump work. The pump works when using R1233zd(E) and R1336mzz(Z) can be up to 14.59% and 38.05% lower than those of R245fa, respectively. Meanwhile, the system showed the highest COPthermal utilizing R1233zd(E) followed by that of R245fa, with the R1336mzz(Z) system having the lowest value. The differences between R1233zd(E) and R1336mzz(Z) systems, R1233zd(E) and R245fa systems were 4.33% and 2.0%, respectively. This paper was expected to provide a good reference for the utilizing prospect of R1233zd(E) and R1336mzz(Z) in ejector refrigeration systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhao G., Liu Z., He Y. et al., Energy consumption in machining: Classification, prediction, and reduction strategy. Energy, 2017, 133: 142–157.

    Article  Google Scholar 

  2. Pablo-Romero M., Pozo-Barajas R., Yñiguez R., Global changes in residential energy consumption. Energy Policy, 2017, 101: 342–352.

    Article  Google Scholar 

  3. Nejat P., Jomehzadeh F., Taheri M. et al., A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries). Renewable and Sustainable Energy Reviews, 2015, 43: 843–862.

    Article  Google Scholar 

  4. Economics BE. BP energy Outlook 2019. 2019.

  5. Xue B., Cai W., Wang X., State-space modelling for the ejector-based refrigeration system driven by low grade energy. Applied Thermal Engineering, 2015, 75: 430–444.

    Article  Google Scholar 

  6. Vall S., Castell A., Radiative cooling as low-grade energy source: A literature review. Renewable and Sustainable Energy Reviews, 2017, 77: 803–820.

    Article  Google Scholar 

  7. Pu W., Yue C., Han D., et al., Experimental study on Organic Rankine cycle for low grade thermal energy recovery. Applied Thermal Engineering, 2016, 94: 221–227.

    Article  Google Scholar 

  8. Xu X., Li Y., Yang S., et al., A review of fishing vessel refrigeration systems driven by exhaust heat from engines. Applied Energy, 2017, 203: 657–676.

    Article  Google Scholar 

  9. García D., Valle J., Sáiz J., Castro R., et al., A one dimensional model for the determination of an ejector entrainment ratio. International Journal of Refrigeration, 2012, 35(4): 772–784.

    Article  Google Scholar 

  10. Chen J., Jarall S., Havtun H., et al., A review on versatile ejector applications in refrigeration systems. Renewable and Sustainable Energy Reviews, 2015, 49: 67–90.

    Article  Google Scholar 

  11. Huang B., Chang J., Wang C., et al., A 1-D analysis of ejector performance. International Journal of Refrigeration, 1999, 22: 354–364.

    Article  Google Scholar 

  12. Han X., Li P., Wang Z., et al., Evaporation heat transfer and pressure drop of R161 in a 7 mm micro-fin tube. International Journal of Heat and Mass Transfer, 2013, 62: 638–646.

    Article  Google Scholar 

  13. Wang X., Gao Z., Gao X., et al., Investigation on the vapor-liquid equilibrium for the ternary mixture HFC-32 + HFC-125 + HFC-161 at temperatures from 265.15 K to 303.15 K. Journal of Chemical & Engineering Data, 2015, 60(9): 2721–2727.

    Article  Google Scholar 

  14. Yan J., Chen G., Liu C., et al., Experimental investigations on a R134a ejector applied in a refrigeration system. Applied Thermal Engineering, 2017, 110: 1061–1065.

    Article  Google Scholar 

  15. Allouhi A., Kousksou T., Jamil A., et al., Solar driven cooling systems: An updated review. Renewable and Sustainable Energy Reviews, 2015, 44: 159–181.

    Article  Google Scholar 

  16. Chen J., Havtun H., Palm B., Screening of working fluids for the ejector refrigeration system. International Journal of Refrigeration, 2014, 47: 1–14.

    Article  Google Scholar 

  17. Abdulateef J., Sopian K., Alghoul M. et al., Review on solar-driven ejector refrigeration technologies. Renewable and Sustainable Energy Reviews, 2009, 13(6–7): 1338–1349.

    Article  Google Scholar 

  18. Yan G., Bai T., Yu J., Energy and exergy efficiency analysis of solar driven ejector-compressor heat pump cycle. Solar Energy, 2016, 125: 243–255.

    Article  ADS  Google Scholar 

  19. Chen G., Zhang R., Zhu D., et al., Experimental study on two-stage ejector refrigeration system driven by two heat sources. International Journal of Refrigeration, 2017, 74: 295–303.

    Article  Google Scholar 

  20. Boumaraf L., Haberschill P., Performance of solar-driven ejector refrigerating system using fluids with low ecological impact. International Journal of Energy, Environment, and Economics, 2016, 24(4): 393–401.

    Google Scholar 

  21. Ma X., Zhang W., Omer S. et al., Experimental investigation of a novel steam ejector refrigerator suitable for solar energy applications. Applied Thermal Engineering, 2010, 30(11–12): 1320–1325.

    Article  Google Scholar 

  22. McLinden M., Brown J., Brignoli R., et al., Limited options for low-global-warming-potential refrigerants. Nature Communications, 2017, 8: 14476.

    Article  ADS  Google Scholar 

  23. Tanaka K., Ishikawa J., Kontomaris K., Thermodynamic properties of HFO-1336mzz(E) (trans-1,1,1,4,4,4-hexafluoro-2-butene) at saturation conditions. International Journal of Refrigeration, 2017, 82: 283–287.

    Article  Google Scholar 

  24. Gagan J., Śmierciew K., Butrymowicz D., Performance of ejection refrigeration system operating with R-1234ze(E) driven by ultra-low grade heat source. International Journal of Refrigeration, 2018, 88: 458–471.

    Article  Google Scholar 

  25. Gao N., Wang X.H., Xuan R.M., Chen G.M., An artificial nerual network for the residual isobaric heat capacity of liquid HFC and HFO refrigerants. International Journal of Refrigeration, 2019, 98: 381–387.

    Article  Google Scholar 

  26. Sulbaek A., Schmidt J., Volkova A., et al., A three-dimensional model of the atmospheric chemistry of E and Z-CF3CH=CHCl(HCFO-1233(zd)(E/Z)). Atmospheric Environment, 2018, 179: 250–259.

    Article  ADS  Google Scholar 

  27. Huo E., Liu C., Xu X., et al., A ReaxFF-based molecular dynamics study of the pyrolysis mechanism of HFO-1336mzz(Z). International Journal of Refrigeration, 2017, 83: 118–130.

    Article  Google Scholar 

  28. Besagni G., Mereu R., Inzoli F., Ejector refrigeration: A comprehensive review. Renewable and Sustainable Energy Reviews, 2016, 53: 373–407.

    Article  Google Scholar 

  29. Carlos M., Joaquín N., Adrián M., et al., Thermodynamic analysis of low GWP alternatives to HFC-245fa in high-temperature heat pumps: HCFO-1224yd(Z), HCFO-1233zd(E) and HFO-1336mzz(Z). Applied Thermal Engineering, 2019, 152: 762–777.

    Article  Google Scholar 

  30. Keerlatiyadatanapat N., Sriveerakul T., Suvarnakuta N., et al., Experimental and theoretical investigation of a hybrid compressor and ejector refrigeration system for automotive air conditioning application. Engineering Journal, 2017, 21(5): 105–123.

    Article  Google Scholar 

  31. Xu Y., Jiang N., Wang Q., et al., Proposal and thermodynamic analysis of an ejection-compression refrigeration cycle driven by low-grade heat. Energy Conversion and Management, 2017, 145: 343–352.

    Article  Google Scholar 

  32. Liu J., Wang L., Jia L., et al., A control oriental model for combined compression-ejector refrigeration system. Energy Conversion and Management, 2017, 138: 538–546.

    Article  Google Scholar 

  33. Yan J., Cai W., Lin C., et al., Experimental study on performance of a hybrid ejector-vapor compression cycle. Energy Conversion and Management, 2016, 113: 36–43.

    Article  Google Scholar 

  34. Xu Y., Jiang N., Wang Q., et al., Refrigerant evaluation and performance comparison for a novel hybrid solar-assisted ejection-compression refrigeration cycle. Solar Energy, 2018, 160: 344–352.

    Article  ADS  Google Scholar 

  35. Yan G., Chen J., Yu J., Energy and exergy analysis of a new ejector enhanced auto-cascade refrigeration cycle. Energy Conversion and Management, 2015, 105: 509–517.

    Article  Google Scholar 

  36. Xing M., Yan G., Yu J., Performance evaluation of an ejector subcooled vapor-compression refrigeration cycle. Energy Conversion and Management, 2015, 92: 431–436.

    Article  Google Scholar 

  37. Yu J., Ren Y., Chen H., et al., Applying mechanical subcooling to ejector refrigeration cycle for improving the coefficient of performance. Energy Conversion and Management, 2007, 48(4): 1193–1199.

    Article  Google Scholar 

  38. Lemmon E., Bell I., Huber M., et al., REFPROP. ver10.0.

  39. Megdouli K., Tashtoush B., Nahdi E., et al., Performance analysis of a combined vapor compression cycle and ejector cycle for refrigeration cogeneration. International Journal of Refrigeration, 2017, 74: 517–527.

    Article  Google Scholar 

  40. Chen G., Volovyk O., Zhu D., et al., Theoretical analysis and optimization of a hybrid CO2 transcritical mechanical compression — ejector cooling cycle. International Journal of Refrigeration, 2017, 74: 86–94.

    Article  Google Scholar 

Download references

Acknowledgement

This work was financially sponsored by National Natural Science Foundation of China (No. 51906216), Zhejiang Provincial Natural Science Foundation of China (No. LQ18E060001), and European Union project H2020 - MSCA - RISE 778104.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neng Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Yan, Y., Wright, E. et al. Prospect Evaluation of Low-GWP Refrigerants R1233zd(E) and R1336mzz(Z) Used in Solar-Driven Ejector-Vapor Compression Hybrid Refrigeration System. J. Therm. Sci. 30, 1572–1580 (2021). https://doi.org/10.1007/s11630-020-1297-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-020-1297-z

Keywords

Navigation