Skip to main content
Log in

Review on Large Eddy Simulation of Turbulent Premixed Combustion in Tubes

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

This paper reviews the existing knowledge on the large eddy simulation (LES) of turbulent premixed combustion in empty tubes and obstructed tubes. From the view of model development in LES, this review comprehensively analyzes the development history and applicability of the important Sub-Grid Scale (SGS) viscosity models and SGS combustion models. LES is also used to combine flow and combustion models to reproduce industrial explosion including deflagration and detonation and the transition from deflagration to detonation (DDT). The discussion about models and applications presented here, leads readers to understand the progress of LES in the explosion of tube and reveals the deficiencies in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Smagorinsky J., General circulation experiments with the primitive equations. Monthly Weather Review. 1963, 91: 99–164.

    ADS  Google Scholar 

  2. Pitsch H., Large-eddy simulation of turbulent combustion. Annual Review of Fluid Mechanics, 2006, 38: 453–483.

    MathSciNet  MATH  ADS  Google Scholar 

  3. Zhiyin Y., Large-eddy simulation: Past, present and the future. Chinese Journal of Aeronautics, 2015, 01: 15–28.

    Google Scholar 

  4. Gicquel L.Y.M, Staffelbach G., Poinsot T., Large Eddy Simulations of gaseous flames in gas turbine combustion chambers. Progress in Energy and Combustion Science, 2012, 38: 782–817.

    Google Scholar 

  5. Boivin P., Dauptain A., Jimenez C., et al., Simulation of a supersonic hydro-genair autoignition-stabilized flame using reduced chemistry. Combustion and Flame, 2012, 159: 1779–1790.

    Google Scholar 

  6. Fureby C., Fedina E., Tegner J., A computational study of supersonic combustion behind a wedge-shaped flameholder. Shock Waves, 2014, 24: 41–50.

    ADS  Google Scholar 

  7. Langella I., Swaminathan N., Unstrained and strained flamelets for LES of premixed combustion. Combustion Theory and Modelling, 2016, 20(3): 410–440.

    MathSciNet  ADS  Google Scholar 

  8. Dodoulas I.A., Navarro-Martinez S. Large eddy simulation of premixed turbulent flames using the probability density function approach. Flow, Turbulence and Combustion, 2013, 90: 645–678.

    Google Scholar 

  9. Jozefik X.Z., Kerstein A.R., Schmidt H., Simulation of shock-turbulence interaction in X non-reactive flow and in turbulent deflagration and detonation regimes using one-dimensional turbulence. Combustion and Flame, 2016, 164: 53–67.

    Google Scholar 

  10. Ibrahim S.S., Gubba S.R., Masri A.R., et al., Calculations of explosion deflagrating flames using a dynamic flame surface density model. Journal of Loss Prevention in the Process Industries, 2009, 22: 258–264.

    Google Scholar 

  11. Sagaut P., Large eddy simulation for incompressible flows. Springer, 2002.

    MATH  Google Scholar 

  12. Meneveau C., Katz J., Scale-invariance and turbulence models for Large-Eddy Simulation. Annual Review of Fluid Mechanics, 2000, 32: 1–32.

    MathSciNet  MATH  ADS  Google Scholar 

  13. Germano M., Piomelli U., Moin P., et al., A dynamic subgrid-scale eddy viscosity model. Physics of Fluids A, 1991, 3: 1760–1765.

    MATH  ADS  Google Scholar 

  14. Nicoud F., and Ducros F., Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbulence and Combustion, 1999, 62: 183–200.

    MATH  Google Scholar 

  15. Yakhot A., Orszag S.A., Yakhot V., et al., Renormali-zation group formulation of large-eddy simulations. Journal of Scientific Computing, 1989, 4: 139–158.

    MathSciNet  ADS  Google Scholar 

  16. Bardina J., Ferziger J.H., Reynolds W.C., Improved subgrid scale models for large-eddy simulations. Am Inst Aeronaut Astronaut J., 1980, 34: 1111–1119.

    Google Scholar 

  17. Zang Y., Street R.L., Koseff J.R., A dynamic subgrid-scale model and its application to turbulent recirculating flows. Physics of Fluids, 1993, 5: 3186–3196.

    MATH  ADS  Google Scholar 

  18. Pham Van C., Deleersnijder E., Bousmar D., et al., Simulation of flow in compound open-channel using a discontinuous Galerkin finite-element method with Smagorinsky turbulence closure. Journal of Hydro-environment Research, 2014, 8: 396–409.

    Google Scholar 

  19. Taeibi-Rahni M., Ramezanizadeh M., Ganji D.D., et al., Comparative study of large eddy simulation of film cooling using a dynamic global-coefficient subgrid scale eddy-viscosity model with RANS and Smagorinsky Modeling. International Communications in Heat and Mass Transfer, 2011, 38: 659–667.

    Google Scholar 

  20. Layton W., Energy dissipation in the Smagorinsky model of turbulence. Applied Mathematics Letters, 2016, 59: 56–59.

    MathSciNet  MATH  Google Scholar 

  21. Champagne F.H., Friehe C.A., LaRue J.C., et al., Flux measurements, flux estimation techniques and fine-scale turbulence measurements in the unstable surface layer overland. Journal of the Atmospheric Sciences, 1977, 34: 515–530.

    ADS  Google Scholar 

  22. Lilly D., On the application of the Eddy viscosity concept in the inertial sub-range of turbulence. National Center for Atmospheric Research, Boulder, Col, USA. 1966.

    Google Scholar 

  23. Moin P., Kim J., Numerical investigation of turbulent channel flow. Journal of Fluid Mechanics, 1982, 118: 341.

    MATH  ADS  Google Scholar 

  24. Vermorel O., Quillatre P., Poinsot T., LES of explosions in venting chamber: A test case for premixed turbulent combustion models. Combustion and Flame, 2017, 183: 207–223.

    Google Scholar 

  25. Li G., Du Y., Wang S., et al., Large eddy simulation and experimental study on vented gasoline-air mixture explosions in a semi-confined obstructed pipe. Journal of Hazardous Materials, 2017, 339: 131–142.

    Google Scholar 

  26. Xiao H., Mao Z., An W., et al., Experimental and LES investigation of flame propagation in a hydrogen/air mixture in a combustion vessel. Chinese Science Bulletin, 2014, 59: 2496–2504.

    ADS  Google Scholar 

  27. Zheng K., Yu M.G., Zheng L.G., et al., Comparative study of the propagation of methane/air and hydrogen/air flames in a duct using large eddy simulation. Process Safety and Environmental Protection, 2018, 120: 45–56.

    Google Scholar 

  28. Zheng K., Yu M., Liang Y., et al., Large eddy simulation of premixed hydrogen/methane/air flame propagation in a closed duct. International Journal of Hydrogen Energy, 2018, 43: 3871–3884.

    Google Scholar 

  29. Singh S., You D., A dynamic global-coefficient mixed subgrid-scale model for large eddy simulation of turbulent flows. International Journal of Heat and Fluid Flow, 2011, 42: 11001.

    Google Scholar 

  30. Veynante D., Vervisch L., Turbulent combustion modeling. Progress in Energy and Combustion Science, 2002, 28: 193–266.

    Google Scholar 

  31. Boger M., Veynante D., Boughanem H., et al., Direct numerical simulation analysis of flame surface density concept for large eddy simulation of turbulent premixed combustion. Proceedings of the Combustion Institute, 1998, 27: 917–925.

    Google Scholar 

  32. Hawkes E., Cant S., A flame surface density approach to LES of premixed turbulent combustion. Proceedings of the Combustion Institute, 2000, 28: 51–58.

    Google Scholar 

  33. Bray K., Moss J., A unified statistical model of the premixed turbulent flame. Acta Astronaut, 1977, 4: 291–319.

    ADS  Google Scholar 

  34. Colin O., Ducros F., Veynante D., et al, A thickened flame model for large eddy simulations of turbulent premixed combustion. Physics of Fluids A, 2000, 12: 1843–1863.

    MATH  ADS  Google Scholar 

  35. Fiorina B., Vicquelin R., Auzillon P., et al., A filtered tabulated chemistry model for LES of premixed combustion. Combustion and Flame, 2010, 157: 465‒475.

    Google Scholar 

  36. Zimont V.L., Theory of turbulent combustion of a homogeneous fuel mixture at high Reynolds numbers. Combustion, Explosion, and Shock Waves, 1979, 15: 305–311.

    Google Scholar 

  37. Zimont V.L., Biagioli F., Syed K., Modelling turbulent premixed combustion in the intermediate steady propagation regime. Progress in Computational Fluid Dynamics. 2001, 1: 14–28.

    Google Scholar 

  38. Flohry P., Pitsch H., A turbulent flame speed closure model for LES of industrial burner flows. In Proceedings of the Center for Turbulence Research Summer Program, Moin P., Reynolds W.C., and Mansour N. (Eds.), Stanford University, 2000, pp. 169–179.

    Google Scholar 

  39. Pitsch H., Duchamp de Lageneste L., Large-eddy simulation of premixed turbulent combustion using a level-set approach. Proceedings of the Combustion Institute, 2002, 29: 2001–2008.

    Google Scholar 

  40. Gulder O.L., Turbulent premixed flame propagation models for different combustion regimes. Symposium on Combustion, 1991, 23: 743–750.

    Google Scholar 

  41. Poinsot T., Veynante D., Theoretical and numerical combustion, 3rd, Edwards. http://elearning.cerfacs.fr/combustion/onlinePoinsotBook/buythirdedition/index.php[EB/OL]. (2011).

    Google Scholar 

  42. Im H.G., Lund T.S., Ferziger J.H., Large eddy simulation of turbulent front propagation with dynamic subgrid models. Physics of Fluids, 1997, 9: 3826–3833.

    MathSciNet  MATH  ADS  Google Scholar 

  43. Roberts W., Driscoll J., Drake M., et al., Images of the quenching of a flame by a vortex-to quantify regimes of turbulent combustion. Combustion and Flame, 1993, 94: 58–62.

    Google Scholar 

  44. Meneveau C., Poinsot T., Stretching and quenching of flamelets in pre-mixed turbulent combustion. Combustion and Flame, 1991, 86: 311–332.

    Google Scholar 

  45. Charlette F., Meneveau C., Veynante D., A power-law flame wrinkling model for LES of premixed turbulent combustion. Part I. Non-dynamic formulation and initial tests. Combustion and Flame, 2002, 131: 159–180.

    Google Scholar 

  46. Veynante D., Moureau V., Analysis of dynamic models for large eddy simulations of turbulent premixed combustion. Combustion and Flame, 2015, 162: 1–21.

    Google Scholar 

  47. Veynante D., Piana J., Duclos J. M., et al., Experimental analysis of flame surface density model for premixed turbulent combustion. Proceedings of the Combustion Institute, 1996, 26: 413–420.

    Google Scholar 

  48. Richard S., Colin O., Vermorel O., et al., Towards large eddy simulation of combustion in spark ignition engines, Proceedings of the Combustion Institute, 2007, 31: 3059–3066].

    Google Scholar 

  49. Weller H.G., Tabor G., Gosman A.D., et al., Application of a flame-wrinkling les combustion model to a turbulent mixing layer. Symposium (International) on Combustion, 1998, 27: 899–907.

    Google Scholar 

  50. Weller H. G., Tabor G., Gosman A.D., et al. Application of a flame-wrinkling les combustion model to a turbulent mixing layer. Symposium on Combustion, 1998, 27(1): 899–907.

    Google Scholar 

  51. Knikker R., Veynante D., Meneveau C., A dynamic flame surface density model for large eddy simulation of turbulent premixed combustion. Physics of Fluids, 2004, 16: 91.

    MATH  ADS  Google Scholar 

  52. Knikker R., Veynante D., Meneveau C., A priori testing of a similarity model for large eddy simulations of turbulent premixed combustion, Proceedings of the Combustion Institute. 2002, 29: 2105–2111.

    MATH  Google Scholar 

  53. Xiao H., Makarov D., Sun J., et al., Experimental and numerical investigation of premixed flame propagation with distorted tulip shape in a closed duct. Combustion and Flame, 2012, 159: 1523–1538.

    Google Scholar 

  54. Bychkov V., Kleev A.I., Liberman M.A., A thin front model applied to flame propagation in tubes. Combustion and Flame, 1998, 113: 470–472.

    Google Scholar 

  55. Bychkov V., Akkerman V., Valiev D., et al., Influence of gas compression on flame acceleration in channels with obstacles. Combustion and Flame, 2010, 157: 2008–2011.

    Google Scholar 

  56. Ciccarelli G., Hlouschko S., Johansen C., et al., The study of geometric effects on the explosion front propagation in a horizontal channel with a layer of spherical beads. Proceedings of the Combustion Institute, 2009, 32: 2299–2306.

    Google Scholar 

  57. Ciccarelli G., Johansen C., Parravani M., Transition in the propagation mechanism during flame acceleration in porous media. Proceedings of the Combustion Institute, 2011, 33: 2273–2278.

    Google Scholar 

  58. Rainsford G., Aulakh D.J.S, Ciccarelli G., Visualization of detonation propagation in a round tube equipped with repeating orifice plates. Combustion and Flame, 2018, 198: 205–221.

    Google Scholar 

  59. Kellenberger M., Ciccarelli G., Propagation mechanisms of supersonic combustion waves. Proceedings of the Combustion Institute, 2015, 35: 2109–2116.

    Google Scholar 

  60. Pinos T., Ciccarelli G., Combustion wave propagation through a bank of cross-flow cylinders. Combustion and Flame, 2015, 162: 3254–3262.

    Google Scholar 

  61. Cross M., Ciccarelli G., DDT and detonation propagation limits in an obstacle filled tube. Journal of Loss Prevention in the Process Industries, 2015, 36: 380–386.

    Google Scholar 

  62. Ellis OCde C., Flame movement in gaseous explosive mixtures. Fuel Science, 1928, 7: 502–508.

    Google Scholar 

  63. Lee J.H., Knystautas R., Chan C.K., Turbulent flame propagation in obstacle-filled tubes. Symposium (International) on Combustion. 1985, 20: 1663–1672.

    Google Scholar 

  64. Dunn Rankin D., Barr P.K., Sawyer R.F., Numerical and experimental study of “tulip” flame formation in a closed vessel. Symposium (International) on Combustion, 1988, 21: 1291–1301.

    Google Scholar 

  65. Matalon M., Metzener P., The propagation of premixed flames in closed tubes. Journal of Fluid Mechanics, 1997, 336: 331–350.

    MathSciNet  MATH  ADS  Google Scholar 

  66. Mcgreevy J.L., Matalon M., Lewis number effect on the propagation of premixed flames in closed tubes. Combustion and Flame, 1992, 91: 213–225.

    Google Scholar 

  67. Xiao H., Duan Q., Sun J., Premixed flame propagation in hydrogen explosions. Renewable and Sustainable Energy Reviews, 2018, 81: 1998–2001.

    Google Scholar 

  68. Xiao H., Duan Q., Jiang L., et al., Effects of ignition location on premixed hydrogen/air flame propagation in a closed combustion tube. International Journal of Hydrogen Energy, 2014, 39: 8557–8563.

    Google Scholar 

  69. Xiao H.H., Duan Q.L., Jiang L., et al., Effect of bend on premixed flame dynamics in a closed duct. International Journal of Heat and Mass Transfer, 2015, 88: 297–305.

    Google Scholar 

  70. Xiao H., Sun J., He X., A study on the dynamic behavior of premixed propane-air flames propagating in a curved combustion chamber. Fuel, 2018, 228: 342–348.

    Google Scholar 

  71. Xiao H., Elaine S.O., Shock focusing and detonation initiation at a flame front. Combustion and Flame, 2019, 203: 397–406.

    Google Scholar 

  72. Yakhot V., Propagation velocity of premixed turbulent flames. Combustion Science and Technology, 1988, 60: 191–214.

    Google Scholar 

  73. Xiao H., Sun J., Chen P., Experimental and numerical study of premixed hydrogen/air flame propagating in a combustion chamber. Journal of Hazardous Materials, 2014, 268: 132–139.

    Google Scholar 

  74. Xiao H., He X., Duan Q., et al., An investigation of premixed flame propagation in a closed combustion duct with a 90° bend. Applied Energy, 2014, 134: 248–256.

    Google Scholar 

  75. Xiao H., Mao Z., An W., et al., Experimental and LES investigation of flame propagation in a hydrogen/air mixture in a combustion vessel. Chinese Science Bulletin, 2014, 59: 2496–2504.

    ADS  Google Scholar 

  76. Xiao H., Houim R.W., Oran E.S., Formation and evolution of distorted tulip flames. Combustion and Flame, 2015, 162: 4084–4101.

    Google Scholar 

  77. Zheng K., Yu M., Liang Y., et al., Large eddy simulation of premixed hydrogen/methane/air flame propagation in a closed duct. International Journal of Hydrogen Energy, 2018, 43: 3871–3884.

    Google Scholar 

  78. Chen P., Guo S., Li Y., et al., Experimental and LES investigation of premixed methane/air flame propagating in a tube with a thin obstacle. Combustion Theory and Modelling, 2016, 21: 1–19.

    Google Scholar 

  79. Khokhlov A.M., Oran E.S., Thomas G.O., Numerical simulation of deflagration-to-detonation transition: the role of shock‒flame interactions in turbulent flames. Combustion and Flame, 1999, 117: 323–339.

    Google Scholar 

  80. Houim R.W., Oran E.S., Structure and flame speed of dilute and dense layered coal-dust explosions. Journal of Loss Prevention in the Process Industries, 2015, 36: 214–222.

    Google Scholar 

  81. Houim R.W., Ozgen A., Oran E.S., The role of spontaneous waves in the deflagration-to-detonation transition in submillimetre channels. Combustion Theory and Modelling, 2016, 20(6): 1068–1087.

    MathSciNet  ADS  Google Scholar 

  82. Oran E.S., Gamezo V.N., Origins of the deflagration-to-detonation transition in gas-phase combustion. Combustion and Flame, 2007, 148: 4–47.

    Google Scholar 

  83. Zhou F., Liu N., Zhang X., Numerical study of hydrogen‒oxygen flame acceleration and deflagration to detonation transition in combustion light gas gun. International Journal of Hydrogen Energy, 2018, 43: 5405–5414.

    Google Scholar 

  84. Burke M.P., Chaos M., Ju Y.G., et al., Comprehensive H2-O2 kinetic model for high-pressure combustion. International Journal of Chemical Kinetics, 2011, 44: 444–474.

    Google Scholar 

  85. Li J., Zhao Z., Kazakov A., et al., An updated comprehensive kinetic model of hydrogen combustion. International Journal of Chemical Kinetics, 2004, 36: 566–575

    Google Scholar 

  86. Ersen K.K., Gas explosions in process pipes. Telemark University College, Norway, 2004.

    Google Scholar 

  87. Masri A R., Ibrahim S.S., Nehzat N., et al., Experimental study of premixed flame propagation over various solid obstructions. Experimental Thermal and Fluid Science, 2000, 21: 109–116.

    Google Scholar 

  88. Abdelraheem M.A., Ibrahim S.S., Malalasekera W., et al., Large eddy simulation of hydrogen–air premixed flames in a small scale combustion chamber. International Journal of Hydrogen Energy, 2015, 40: 3098–3109.

    Google Scholar 

  89. Ibrahim S.S., Gubba S.R., Masri A.R., et al., Calculations of explosion deflagrating flames using a dynamic flame surface density model. Journal of Loss Prevention in the Process Industries, 2009, 22: 258–264.

    Google Scholar 

  90. Gubba S.R., Ibrahim S.S., Malalasekera W., et al., Measurements and LES calculations of turbulent premixed flame propagation past repeated obstacles. Combustion and Flame, 2011, 158: 2465–2481.

    Google Scholar 

  91. Masri A.R., Ibrahim S.S., Cadwallader B.J., Measurements and large eddy simulation of propagating premixed flames. Experimental Thermal and Fluid Science, 2006, 30: 687–702.

    Google Scholar 

  92. Volpiani P.S., Schmitt T., Vermorel O., et al., Large eddy simulation of explosion deflagrating flames using a dynamic wrinkling formulation. Combustion and Flame, 2017, 186: 17–31.

    Google Scholar 

  93. Masri A.R., Alharbi A., Meares S., at al, A comparative study of turbulent premixed flames propagating past repeated obstacles. Industrial and Engineering Chemistry Research, 2012, 51: 7690–7703.

    Google Scholar 

  94. Johansen C., Ciccarelli G., Modeling the initial flame acceleration in an obstructed channel using large eddy simulation. Journal of Loss Prevention in the Process Industries, 2013, 26: 571–585.

    Google Scholar 

  95. Johansen C.T., Ciccarelli G., Visualization of the unburned gas flow field ahead of an accelerating flame in an obstructed square channel. Combustion and Flame, 2009, 156: 405–416.

    Google Scholar 

  96. Sarli V.D., Benedetto A.D., Russo G., Sub-grid scale combustion models for large eddy simulation of unsteady premixed flame propagation around obstacles. Journal of Hazardous Materials, 2010, 180: 71–78.

    Google Scholar 

  97. Chen P., Guo S., Li Y., et al., Experimental and LES investigation of premixed methane/air flame propagating in a tube with a thin obstacle. Combustion Theory and Modelling, 2016, 21: 1–19.

    Google Scholar 

  98. Wen X., Su T., Liu Z., et al., Numerical investigation on porous media quenching behaviors of premixed deflagrating flame using RANS/LES model. Journal of Thermal Science, 2019, 28: 780–788.

    ADS  Google Scholar 

  99. Wen X., Xie M., Yu M., et al., Porous media quenching behaviors of gas deflagration in the presence of obstacles. Experimental Thermal and Fluid Science, 2013, 50: 37–44.

    Google Scholar 

  100. Khodadadi A.R., Heidari Ali., Lorenz R., et al., The effect of concentration gradients on deflagration-to-detonation transition in a rectangular channel with and without obstructions–A numerical study. International Journal of Hydrogen Energy, 2019, 13: 7032–7040.

    Google Scholar 

  101. O’Conaire M., Curran H., Simmie J., et al., A comprehensive modeling study of hydrogen oxidation. International Journal of Chemical Kinetics, 2004, 36: 603–622.

    Google Scholar 

  102. Khodadadi Azadboni R., Wen J.X., Heidari A., et al., Numerical modeling of deflagration to detonation transition in inhomogeneous hydrogen/air mixtures. Journal of Loss Prevention in the Process Industries, 2017, 49: 722–730.

    Google Scholar 

Download references

Acknowledge

This work is funded by Basic Science and Technology Program of Wenzhou (G20180031, R20180027) and the Scientific and Research Program of Zhejiang College of Security Technology (AF2019Y02, AF2019Z01). I would like to extend my sincere gratitude to Zhao Bingzhi and Ye Mangmang from Department of Basic for their help in checking grammar mistakes. The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gang Luo or Bingxin Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, G., Dai, H., Dai, L. et al. Review on Large Eddy Simulation of Turbulent Premixed Combustion in Tubes. J. Therm. Sci. 29, 853–867 (2020). https://doi.org/10.1007/s11630-020-1311-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-020-1311-5

Keywords

Navigation