Skip to main content
Log in

Thermochemical Aspects of Activated Ammonium Perchlorates with Superior Thermal Stability, Decomposition Enthalpy, Propagation Index, and Decomposition Kinetic Parameters

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

Ammonium perchlorate (AP) includes oxidizing and reducing elements on the same molecule. AP can act as an efficient oxidizer and mono-propellant as well. In this study, AP experienced crystallographic phase change from orthorhombic centrosymmetric to non-centrosymmetric under controlled isothermal heat treatment. XRD diffractograms confirmed this crystallographic phase change. The thermal behaviour of activated AP had been investigated using DSC. Activated AP demonstrated high chemical stability with an increase in endothermic phase transition enthalpy by 170%. The enthalpy of the subsequent two main exothermic decomposition reactions was increased by 250%. Whereas AP demonstrated total decomposition enthalpy of 733 J/g, activated AP showed 2614 J/g. Activated AP can secure self-sustained response at a high rate. Propagation index (combustion enthalpy/ignition temperature) was employed to assess self-sustained reaction propagation. Activated AP demonstrated high propagation index of 8.7 compared with 2.5 for un-activated AP. Primary decomposition kinetic parameters had investigated using Kissinger and KAS methods. Activated AP showed an increase in activation energy by 89% using the Kissinger method; kinetic parameters using the KAS method were in good agreement with the Kissinger method. It can have concluded that AP with novel kinetic decomposition parameters for enhanced safety storage and high combustion characteristics has evolved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Conkling J., Mocella C., Chemistry of pyrotechnics basic principles and theory. Second ed., CRC: London, 2012.

    Google Scholar 

  2. Elbasuney S., Gobara M., Yehia M., Ferrite nanoparticles: synthesis, characterization, and catalytic activity evaluation for solid rocket propulsion systems. Journal of Inorganic and Organometallic Polymers and Materials, 2019, 29: 721–729.

    Article  Google Scholar 

  3. Elbasuney S., Gobara M., Zaky M.G., Radwan M., Maraden A., Ismael S., Elsaka E., Abd Elkodous M., El-Sayyad G.S., Synthesis of CuO-distributed carbon nanofiber: Alternative hybrid for solid propellants. Journal of Materials Science: Materials in Electronics, 2020, 31(11): 8212–8219.

    Google Scholar 

  4. Elbasuney S., Yehia M., Ammonium perchlorate encapsulated with TiO2 nanocomposite for catalyzed combustion reactions. Journal of Inorganic and Organometallic Polymers and Materials, 2019, 29: 1349–1357.

    Article  Google Scholar 

  5. Elbasuney S., Yehia M., Thermal decomposition of ammonium perchlorate catalyzed with CuO nanoparticles. Defence Technology, 2019, 15(6): 868–874.

    Article  Google Scholar 

  6. Elbasuney S., Yehia M., Ferric oxide colloid: a novel nano-catalyst for solid propellants. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30(3): 706–713.

    Article  Google Scholar 

  7. Kubota N., Propellants and explosives: thermochemical aspects of combustion. WILEY-VCH: Weinhei, 2002.

    Google Scholar 

  8. Cai W., Thakre P., Yang V., A model of AP/HTPB composite propellant combustion in rocket-motor environments. Combustion Science and Technology, 2008. 180(12): 2143–2169.

    Article  Google Scholar 

  9. Yadav N., Srivastava P.K., Varma M., Recent advances in catalytic combustion of AP-based composite solid propellants. Defence Technology, 2021, 17(3): 1013–1031.

    Article  Google Scholar 

  10. Kuo K.K., Summerfield M., Fundamentals of solid-propellant combustion. American Institute of Aeronautics and Astronautics, Inc.: New York, 1984.

    Book  Google Scholar 

  11. Sharma J.K., Srivastava P., Singh G., Akhtar S.M., Ameen S., Biosynthesized NiO nanoparticles: potential catalyst for ammonium perchlorate and composite solid propellants. Ceramics International, 2015, 41(1, Part B): 1573–1578.

    Article  Google Scholar 

  12. Ishitha K. Ramakrishna P.A., Studies on the role of iron oxide and copper chromite in solid propellant combustion. Combustion and Flame, 2014, 161(10): 2717–2728.

    Article  Google Scholar 

  13. Arroyo J.L., Povea P., Faúndez R., Camarada M.B., Cerda-Cavieres C., Abarca G., Manriquez J.M., Morales-Verdejo C., Influence iron-iron distance on the thermal decomposition of ammonium perchlorate. New catalysts for the highly efficient combustion of solid rocket propellant. Journal of Organometallic Chemistry, 2020, 905: 121020.

    Article  Google Scholar 

  14. Dubey R., Chawla M., Siril P.F., Singh G., Bi-metallic nanocomposites of Mn with very high catalytic activity for burning rate enhancement of composite solid propellants. Thermochimica Acta, 2013, 572: 30–38.

    Article  Google Scholar 

  15. Davenas A., Solid rocket propulsion technology. PERGAMON PRESS: Oxford, 2012.

    Google Scholar 

  16. Yang V., Brill T., Ren E.Z., Solid propellant chemistry, combustion, and motor interior ballistics. American Institute of Aeronautics and Astronautics, Inc., USA: Reston, Virginia. 2000.

    Google Scholar 

  17. Budhwar A.S., et al., Modified iron oxide nanoparticles as burn rate enhancer in composite solid propellants. Vacuum, 2018. 156: 483–491.

    Article  ADS  Google Scholar 

  18. Vara J.A., Dave P.N., Ram V.R., Nanomaterials as modifier for composite solid propellants. Nano-Structures & Nano-Objects, 2019. 20: 100372.

    Article  Google Scholar 

  19. Vijay C., Ramakrishna P.A., Estimation of burning characteristics of AP/HTPB composite solid propellant using a sandwich model. Combustion and Flame, 2020. 217: 321–330.

    Article  Google Scholar 

  20. Jain S., Qiao L., MnO2-coated graphene foam micro-structures for the flame speed enhancement of a solid-propellant. Proceedings of the Combustion Institute, 2019, 37(4): 5679–5686.

    Article  Google Scholar 

  21. Maggi, F., Dossi S., Paravan C., Galfetti L., Rota R., Cianfanelli S., Marra G., Iron oxide as solid propellant catalyst: A detailed characterization. Acta Astronautica, 2019, 158: 416–424.

    Article  ADS  Google Scholar 

  22. Kuo K.K., Summerfield M., eds. Fundamentals of solid-propellant combustion. third ed., American Institute of Aeronautics and Astronautics, New York, 1984.

    Google Scholar 

  23. Vyazovkin S., Burnham A.K., Criado J.M., Pérez-Maqueda L.A., Popescu C., Sbirrazzuoli N., ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochimica acta, 2011, 520(1–2): 1–19.

    Article  Google Scholar 

  24. Trache D., Khimeche K., Mezroua A., Benziane M., Physicochemical properties of microcrystalline nitrocellulose from Alfa grass fibres and its thermal stability. Journal of Thermal Analysis and Calorimetry, 2016, 124(3): 1485–1496.

    Article  Google Scholar 

  25. Akahira T., Sunuse T.T., Joint convention of four electrical institutes. Research Report, Chiba Institute of Technology, 1971, 16: 22–31.

    Google Scholar 

  26. Liu W., Xie Y., Xie Q., Fang K., Zhang X., Chen H., Dropwise cooling crystallization of ammonium perchlorate in gas-liquid two-phase suspension systems. CrystEngComm, 2018, 20(43): 6932–6939.

    Article  Google Scholar 

  27. Abd Elkodous M., et al., Nanocomposite matrix conjugated with carbon nanomaterials for photocatalytic wastewater treatment. Journal of Hazardous Materials, 2020, 410: 124657.

    Article  Google Scholar 

  28. Boldyrev V., Thermal decomposition of ammonium perchlorate. Thermochimica acta, 2006, 443(1): 1–36.

    Article  Google Scholar 

  29. Elbasuney S., Fahd A., Mostafa H.E., Mostafa S.F., Sadek R., Chemical stability, thermal behavior, and shelf life assessment of extruded modified double-base propellants. Defence Technology, 2018, 14(1): 70–76.

    Article  Google Scholar 

  30. Elbasuney S., Zaky M.G., Radwan M., Mostafa S.F., Stabilized super-thermite colloids: a new generation of advanced highly energetic materials. Applied Surface Science, 2017, 419: 328–336.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Chemical Engineering Department, Military Technical College (MTC), Egyptian Armed Forces, Cairo, Egypt for their invaluable support of this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Elbasuney Sherif or S. El-Sayyad Gharieb.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sherif, E., Yehia, M., Shukri, I. et al. Thermochemical Aspects of Activated Ammonium Perchlorates with Superior Thermal Stability, Decomposition Enthalpy, Propagation Index, and Decomposition Kinetic Parameters. J. Therm. Sci. 30, 2196–2201 (2021). https://doi.org/10.1007/s11630-021-1498-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-021-1498-0

Keywords

Navigation