Skip to main content
Log in

Isolation and analysis of a TIR-specific promoter from poplar

  • Research Article
  • Published:
Forestry Studies in China

Abstract

A 5′ flanking region of the well-conserved Toll/interleukin-1 receptor domain (TIR)-encoding sequence was isolated from the genomic DNA of Melampsora magnusiana Wagner resistant clones of hybrid triploid poplars [(Populus tomentosa × P. bolleana) × P. tomentosa]. Sequencing results and alignment analysis show that the obtained TIR-specific promoter (named as PtTIRp01) was 1,732 bp in length; moreover 3′ region of the PtTIRp01 contains a 398 bp complete TIR-encoding sequence, which significantly corresponds to the 5′ composition of TIR-NBS type gene PtDRG02, indicating that the obtained TIR-specific promoter region consists of 747 bp long 5′ region of TIR-NBS type gene PtDRG02 and its upstream region of promoter (985 bp). It was found that the 5′ region of TIR-NBS type gene PtDRG02 was characterized in the downstream region of the transcriptional start, named as 5′-untranslated region (5′ UTR), consisting of one 93 bp 5′-untranslation exon, one 213 bp intron and one 441 bp TIR-encoding open reading frame (ORF). In addition, several putative cis-acting motifs were present in the obtained TIR-specific promoter of PtDRG02, including one TATA box, one GC-rich, one AT-rich, one P-box, one 3-AF1 binding site, two CAAT boxes, two GT-1 motifs, three typical W-boxes, four I-boxes, and one multi-cis-acting fragment (MCF). The latter contains five types of regulatory elements (E4, G-box, ABRE motif, box1 and HVA1s), most of which were homologous to the cis-acting regulatory elements involved in the activation of defense genes in plants. Thus, it can be suggested that TIR-specific promoter might be a pathogen-inducible promoter and be necessary for the inducible expression of defense-related genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aderem A, Ulevitch R J. 2000. Toll-like receptors in the induction of the innate immune response. Nature, 406(6,797): 782–787

    Article  PubMed  CAS  Google Scholar 

  • Agius F, Amaya I, Botella M A, Valpuesta V. 2005. Functional analysis of homologous and heterologous promoters in strawberry fruits using transient expression. J. Exp. Bot., 56(409): 37–46

    PubMed  CAS  Google Scholar 

  • Altpeter F, Varshney A, Abderhalden O, Douchkov D, Sautter C, Kumlehn J, Dudler R, Schweizer P. 2005. Stable expression of a defense-related gene in wheat epidermis under transcriptional control of a novel promoter confers pathogen resistance. Plant Mol. Biol., 57: 271–283

    Article  PubMed  CAS  Google Scholar 

  • Alvarez-Buylla E R, Liljegren S J, Pelaz S, Gold S E, Burgeff C, Bitta G S, Vergara-Silva F, Yanofsky M F. 2000. MADS-box gene evolution beyond flowers: expression in pollen, endosperm, guard cells, roots, and trichomes. Plant J., 24: 457–466

    Article  PubMed  CAS  Google Scholar 

  • Anderson P A, Lawrence G J, Morrish B C, Ayliffe M A, Finnegan E J, Ellis J G. 1997. Inactivation of the flax rust resistance gene M associated with loss of a repeated unit within the leucine-rich repeat coding region. Plant Cell, 9(4): 641–651

    Article  PubMed  CAS  Google Scholar 

  • Bailey-Serres J, Gallie D R. 1998. A look beyond transcription. Mechanisms determining mRNA stability and translation in plants. Amer. Soc. Plant Biol., 1–183

  • Baum K, Groning B, Meier I. 1997. Improved ballistic transient transformation conditions for tomato fruit allow identification of organ-specific contributionsof I-box and G-box to the RBCS2 promoter activity. Plant J., 12: 463–469

    Article  PubMed  CAS  Google Scholar 

  • Borello U, Ceccarelli E, Giuliano G. 1993. Constitutive, light-responsive and circadian clock-responsive factors compete for the different I-box elements in plant light-regulated promoters. Plant J., 4: 611–619

    Article  PubMed  CAS  Google Scholar 

  • Buchel A S, Brederode F T, Bol J F, Linthorst H J. 1999. Mutation of GT-1 binding sites in the Pr-1A promoter influences the level of inducible gene expression in vivo. Plant Mol. Biol., 40: 387–396

    Article  PubMed  CAS  Google Scholar 

  • Burch-Smith T M, Schiff M, Caplan J L, Tsao J, Czymmek K, Dinesh-Kumar S P. 2007. A novel role for the TIR domain in association with pathogen-derived elicitors. PLoS Biol., 5(3): e68

    Article  PubMed  CAS  Google Scholar 

  • Campbell M A, Fitzgerald H A, Ronald P C. 2002. Engineering pathogen resistance in crop plants. Transgenic Res., 11(6): 599–613

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Chen Z. 2002. Potentiation of developmentally regulated plant defense response by AtWRKY18, a pathogen-induced Arabidopsis transcription factor. Plant Physiol., 129(2): 706–771

    Article  PubMed  CAS  Google Scholar 

  • Clancy M, Vasil V, Hannah L C, Vasil I K. 1994. Maize shrunken-1 intron and exon regions increase gene expression in maize protoplasts. Plant Sci., 98: 151–161

    Article  CAS  Google Scholar 

  • Cormack R S, Eulgem T, Rushton P J, KÖchner P, Hahlbrock K, Simssich I E. 2002. Leucine zipper-containing WRKY proteins widen the spectrum of immediate early elicitor-induced WRKY transcription factors in parsley. Biochem. Biophys. Acta, 1,576: 92–100

    PubMed  CAS  Google Scholar 

  • Dellagi A, Helibronn J, Avrova A O, Montesano M, Palva E T, Stewart H E, Toth I K, Cooke D E, Lyon G D, Birch P R. 2000. A potato gene encoding a WRKY-like transcription factor is induced in interactions with Erwiniw carotovora subsp. atroseptica and Phytophthora infestans and is co-regulated with class I endochitinase expression. Mol. Plant Microbe Interact., 13: 1,092–1,101

    Article  CAS  Google Scholar 

  • Ditzer A, Bartels D. 2006. Identification of a dehydration and ABA-responsive promoter regulon and isolation of corresponding DNA binding proteins for the group 4 LEA gene CpC2 from C. plantagineum. Plant Mol. Biol., 61: 643–663

    Article  PubMed  CAS  Google Scholar 

  • Du L, Chen Z. 2000. Identification of genes encoding receptor-like protein kinases as possible targets of pathogen-and salicylic acid-induced WRKY DNA-binding proteins in Arabidopsis. Plant J., 24: 837–847

    Article  PubMed  CAS  Google Scholar 

  • Eulgem T, Rushton P J, Robatzek S, Somssich I E. 2000. The WRKY superfamily of plant transcription factors. Trends Plant Sci., 5(5): 199–206

    Article  PubMed  CAS  Google Scholar 

  • Eulgem T, Rushton P J, Schmelzer E, Hahlbrock K, Somssich I E. 1999. Early nuclear events in plant defense signalling: rapid gene activation by WRKY transcription factors. EMBO J., 18(17): 4,689–4,699

    Article  CAS  Google Scholar 

  • Eulgem T. 2006. Dissecting the WRKY web of plant defense regulators. PLoS Pathog., 2(11): e126

    Article  PubMed  CAS  Google Scholar 

  • Fenoll C, Schwarz J J, Schneider M, Howell S H. 1990. The intergenic region of maize streak virus contains a GC-rich element that activates rightward transcription and binds maize nuclear factors. Plant Mol. Biol., 15(6): 865–877

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald H A, Chern M S, Navarre R, Ronald P C. 2004. Overexpression of (At) NPR1 in rice leads to a BTH-and environment-induced lesion-mimic/cell death phenotype. Mol. Plant Microbe Interact., 17(2): 140–151

    Article  PubMed  CAS  Google Scholar 

  • Fiume E, Christou P, Gianì S, Breviario D. 2004. Introns are key regulatory elements of rice tubulin expression. Planta, 218: 693–703

    Article  PubMed  CAS  Google Scholar 

  • Fujita Y, Fujita M, Satoh R, Maruyama K, Parvez M M, Seki M, Hiratsu K, Ohme-Takagi M, Shinozaki K, Yamaguchi-Shinozaki K. 2005. AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell, 17(12): 3,470–3,488

    Article  CAS  Google Scholar 

  • García-Hernández M, Murphy A, Taiz L. 1998. Metallothioneins 1 and 2 have distinct but overlapping expression patterns in Arabidopsis. Plant Physiol., 118: 387–397

    Article  PubMed  Google Scholar 

  • Gidekel M, Jimenez B, Herrera-Estrella L. 1996. The first intron of the Arabidopsis thaliana gene coding for elongation factor 1β contains an enhancer-like element. Gene, 170: 201–206

    Article  PubMed  CAS  Google Scholar 

  • Green P J, Kay S A, Chua N H. 1987. Sequence-specific interactions of a pea nuclear factor with light-responsive elements upstream of the rbcS-3A gene. EMBO J., 6: 2,543–2,549

    CAS  Google Scholar 

  • Gruner R, Strompen G, Pfitzner A J, Pfitzner U M. 2003. Salicylic acid and the hypersensitive response initiate distinct signal transduction pathways in tobacco that converge on tha as-1-like element of the PR-1a promoter. Eur. J. Biochem., 270: 4,876–4,886

    Article  CAS  Google Scholar 

  • Gubler F, Jacobsen J V. 1992. Gibberellin-responsive elements in the promoter of a barley high-pl α-amylase gene. Plant Cell, 4: 1,435–1,441

    Article  CAS  Google Scholar 

  • Gutiérrez-Alcalá G, Calo L, Gros F, Caissard J C, Gotor C, Romero L C. 2005. A versatile promoter for the expression of proteins in glandular and non-glandular trichomes from a variety of plants. J. Exp. Bot., 56(419): 2,487–2,492

    Google Scholar 

  • Hara K, Yagi M, Kusano T, Sano H. 2000. Rapid systemic accumulation of transcripts encoding a tobacco WRKY transcription factor upon wounding. Mol. Gen. Genet., 263: 30–37

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto C, Hudson K L, Anderson K V. 1988. The Toll gene of Drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein. Cell., 52(2): 269–279

    Article  PubMed  CAS  Google Scholar 

  • Herschbach C, Kopriva S. 2002. Transgenic trees as tools in tree and plant physiology. Trees., 16: 250–261

    Article  CAS  Google Scholar 

  • Hong J K, Hwang B K. 2006. Promoter activation of pepper class II basic chitinase gene, CAChi2, and enhanced bacterial disease resistance and osmotic stress tolerance in the CAChi2-overexpression Arabidopsis. Planta, 223(3): 433–448

    Article  PubMed  CAS  Google Scholar 

  • Howles P, Lawrence G, Finnegan J, McFadden H, Ayliffe M, Dodds P, Ellis J. 2005. Autoactive alleles of the flax L6 rust resistance gene induce non-race-specific rust resistance associated with the hypersensitive response. Mol Plant Microbe Interact., 18(6): 570–582

    Article  PubMed  CAS  Google Scholar 

  • Ito S, Nakamichi N, Matsushika A, Fujimori T, Yamashino T, Mizuno T. 2005. Molecular dissection of the promoter of the light-induced and circadian-controlled APRR9 gene encoding a clock-associated component of Arabidopsis thaliana. Biosci. Biotechnol. Biochem., 69(2): 382–390

    Article  PubMed  CAS  Google Scholar 

  • Izawa T, Foster R, Chua N H. 1993. Plant b-ZIP proteins DNA-binding specificity. J. Mol. Biol., 230: 1,131–1,144

    Article  CAS  Google Scholar 

  • Jan A, Kitano H, Mastsumoto H, Komatsu S. 2006. The rice OsGAEl is a novel gibberellin-regulated gene and involved in rice growth. Plant Mol. Biol., 62: 439–452

    Article  PubMed  CAS  Google Scholar 

  • Jung H W, Kim K D, Hwang B K. 2005. Identification of pathogen-responsive regions in the promoter of a pepper lipid transfer protein gene (CALTPI) and the enhanced resistance of the transgenic CALTPI Arabidopsis against pathogen and environmental stresses. Planta, 221: 361–373

    Article  PubMed  CAS  Google Scholar 

  • Jung H W, Kim W, Hwang B K. 2003. Three pathogen-inducible genes encoding lipid transfer protein from pepper are differentially activated by pathogens, abiotic and environmental stresses. Plant Cell Environ., 26: 915–928

    Article  PubMed  CAS  Google Scholar 

  • Joung Y H, Kamo K. 2006. Expression of a polyubiquitin promoter isolated from Gladiolus. Plant Cell Rep., 25(10): 1,081–1,088

    Article  CAS  Google Scholar 

  • Kawaoka A, Kawamoto T, Sekine M, Yoshida K, Takano M, Shinmyo A. 1994. A cis-acting element and a trans-acting factor involved in the wound-induced expression of a horseradish peroxidase gene. Plant J., 6(1): 87–97

    Article  PubMed  CAS  Google Scholar 

  • Kim C Y, Lee S H, Park H C, Bae C G, Cheong Y H, Choi Y J, Han C, Lee S Y, Lim C O, Cho M J. 2000. Identification of rice blast fungal elicitor-responsive genes by differential display analysis. Mol. Plant Microbe Interact., 13: 470–474

    Article  PubMed  CAS  Google Scholar 

  • Kim M J, Kim H, Shin J S, Chung C H, Ohlrogge J B, Suh M C. 2006. Seed-specific expression of sesame microsomal oleic acid desaturase is controlled by combinatorial properties between negative cis-regulatory elements in the SeFAD2 promoter and enhancers in the 5′-UTR intron. Mol Genet Genomics., 276(4): 351–368

    Article  PubMed  CAS  Google Scholar 

  • Kim S Y, Chung H J, Thomas T L. 1997. Isolation of a novel class of bZIP transcription factors that interact with ABA-responsive and embryo-specification elements in the Dc3 promoter using a modified yeast one-hybrid system. Plant J., 11(6): 1,237–1,251

    Article  CAS  Google Scholar 

  • Kim Y J, Lee S H, Park K Y. 2004. A leader intron and 115-bp promoter region necessary for expression of the carnation S-adenosylmethionine decarboxylase gene in the pollen of transgenic tobacco. FEBS Letters, 578: 229–235

    Article  PubMed  CAS  Google Scholar 

  • Kirsch C, Logemann E, Lippok B, Schmelzer E, Hahlbrock K. 2001. A highly specific pathogen-responsive promoter element from the immediate-early activated CMPG1 gene in Perroselinum crispum. Plant J., 26: 217–227

    Article  PubMed  CAS  Google Scholar 

  • Laloi C, Mestres-Ortega D, Marco Y, Meyer Y, Reichheld J P. 2004. The Arabidopsis cytosolic thioredoxin h5 gene induction by oxidative stress and its W-box-mediated response to pathogen elicitor. Plant Physiol., 134 (3): 1,006–1,016

    Article  CAS  Google Scholar 

  • Lawrence S D, Dervinis C, Novak N, Davis J M. 2006. Wound and insect herbivory responsive genens in poplar. Biotechnol. Lett., 28: 1,493–1,501

    CAS  Google Scholar 

  • Le Hir H, Nott A, Moore M J. 2003. How introns influence and enhance eukaryotic gene expression. Trends Biochem. Sci., 28: 215–220

    Article  PubMed  CAS  Google Scholar 

  • Lebel J H, Heifetz P, Thorne L, Uknes S, Ryals J, Ward E. 1998. Functional analysis of regulatory sequences controlling PR-1 gene expression in Arabidopsis. Plant J., 21: 329–339

    Google Scholar 

  • Lee S C, Hwang B K. 2006. Identification and deletion analysis of the promoter of the pepper SAR8.2 gene activated by bacterial infection and abiotic stresses. Planta., 224(2): 225–267

    Google Scholar 

  • Lee S C, Kim S H, Jung Y H, Kim J A, Lee M O, Choi P G, Hhoi W, Kim K N, Jwa N S. 2005. Molecular cloning and functional analysis of rice (Oryza sativa L.) OsDRI on defense signaling pathway. Plant Physiol., 21: 149–157

    Google Scholar 

  • León J, Rojo E, Titarenko E, Sanchez-Serrano J J. 1998. Jasmonic acid-dependent and-independent wound signal transduction pathways are differentially regulated by Ca2+/calmodulin in Arabidopsis thaliana. Mol. Gen. Genet., 258: 412–419

    Article  PubMed  Google Scholar 

  • Lescot M, Rombauts S, Zhang J, Aubourg S, Mathé C, Jansson S, Rouzé P, Boerjan W. 2004. Annotation of a 95-kb Populus deltoides genomic sequence reveals a disease resistance gene cluster and novel class I and class II transposable elements. Theor. Appl. Genet., 109: 10–22

    Article  PubMed  CAS  Google Scholar 

  • Li Y F, Zhu R, Xu P L. 2005. Activation of the gene promoter of barley β-1,3-glucanase isoenzyme GIII is salicylic acid (SA)-dependent in transgenic rice plants. J Plant Res., 118: 215–221

    Article  PubMed  CAS  Google Scholar 

  • Lin S Z, Zhang Z Y, Zhang Q, Lin Y Z. 2006. Progress in the study of molecular genetic improvements of poplar in China. J. Integr. Plant Biol., 48(9): 1,001–1,007

    Article  CAS  Google Scholar 

  • Liu J J, Ekramoddoullah A K M, Piggott N, Zamani A. 2005. Molecular cloning of a pathogen/wound-inducible PR10 promoter from Pinus monticola and characterization in transgenic Arabidopsis plants. Planta, 221: 159–169

    Article  PubMed  CAS  Google Scholar 

  • Lopes Cardoso M I, Meijer A H, Rueb S, Queiroz Machado J, Memelink J, Hoge J H C. 1997. A promoter region that controls basal and eclicitor-inducible expression levels of the NADPH: cytochrome P450 reductase gene (CPr) from Catharanthus roseus binds nuclear factor GT-1. Mol. Gen. Genet., 256: 674–681

    CAS  Google Scholar 

  • Malnoy M, Reynoird J P, Borejsza-Wysocka E E, Aldwinckle H S. 2006. Activation of the pathogen-inducible Gst1 promoter of potato after elicitation by Venturia inaequalis and Erwinia amylovora in transgenic apple (Malus × domestica). Transgenic Res., 15(1): 83–93

    Article  PubMed  CAS  Google Scholar 

  • Marcotte W R Jr, Russell S H, Quatrano R S. 1989. Abscisci acid-responsive sequences from the Em gene of wheat. Plant Cell., 1: 969–976

    Article  PubMed  CAS  Google Scholar 

  • Mascarenhas D, Mettler I J, Pierce D A, Lowe H W. 1990. Intron-mediated enhancement of heterologous gene expression in maize. Plant Mol. Biol., 15: 913–920

    Article  PubMed  CAS  Google Scholar 

  • Mass C, Laufs J, Grant S, Korthage C, Werr W. 1991. The combination of a novel stimulatory element in the first exon of the maize shrunken-1 gene with the following intron enhances reporter gene expression up to 10000-fold. Plant Mol. Biol., 16: 199–207

    Article  Google Scholar 

  • Mena M, Cejudo F J, Isabel-Lamoneda I, Carbonero P. 2002. A role of the DOF transcription factor BPBF in the regulation of Gibberellin-responsive genes in barley aleurone. Plant Physiol., 130: 111–119

    Article  PubMed  CAS  Google Scholar 

  • Menkens A E, Schindler U, Cashmore A R. 1995. The G-box: a ubiquitous regulatory DNA element in plants bound by the GBF family of bZIP proteins. Trends Biochem. Sci., 20(12): 506–510

    Article  PubMed  CAS  Google Scholar 

  • Mentag R, Luckevich M, Morency M J, Seguin A. 2003. Bacterial disease resistance of transgenic hybrid poplar expressing the synthetic antimicrobial peptide D4E1. Tree Physiol., 23(6): 405–411

    PubMed  CAS  Google Scholar 

  • Meyers B C, Morgante M, Michelmore R W. 2002. TIR-X and TIR-NBS proteins: two new families related to disease resistance TIR-NBS-LRR proteins encoded in Arabidopsis and other plant genomes. Plant J., 32(1): 77–92

    Article  PubMed  CAS  Google Scholar 

  • Morello L, Bardini M, Cricrì M. 2006. Functional analysis of DNA sequences controlling the expression of the rice OsCDPK2 gene. Planta., 223(3): 479–491

    Article  PubMed  CAS  Google Scholar 

  • Morello L, Bardini M, Sala F, Breviario D. 2002. A long leader intron of the Ostub16 rice β-tubulin gene is required for high-level gene expression and can autonomously promote transcription both in vivo and in vitro. Plant J., 29: 33–44

    Article  PubMed  CAS  Google Scholar 

  • Morita A, Umemura T, Kuroyanagi M, Futsuhara Y, Perata P, Yamaguchi J. 1998. Functional dissection of a sugar-repressed α-amylase gene (Ramy 1A) promoter in rice embryos. FEBS Lett., 423: 81–85

    Article  PubMed  CAS  Google Scholar 

  • Nishiuchi T, Shinshi H, Suzuki K. 2004. Rapid and transient activation of transcription of the ERF3 gene by wounding in tobacco leaves: possible involvement of NtWRKYs and autorepression. J. Biol. Chem., 279(53): 55,355–55,361

    Article  CAS  Google Scholar 

  • Noel L, Moores T L, van Der Biezen E A, Parniske M, Daniels M J, Parker J E, Jones J D. 1999. Pronounced intraspecific haplotype divergence at the RPP5 complex disease resistance locus of Arabidopsis. Plant Cell., 11(11): 2,099–2,112

    Article  CAS  Google Scholar 

  • Nurnberger T, Brunner F, Kemmerling B, Piater L. 2004. Innate immunity in plants and animals: striking similarities and obvious differences. Immunol. Rev., 198: 249–266

    Article  PubMed  Google Scholar 

  • O’Neill L. 2000. The Toll/interleukin-1 receptor domain: a molecular switch for inflammation and host defense. Biochem. Soc. Trans., 28: 557–563

    PubMed  CAS  Google Scholar 

  • Ohme-Takagi M, Shinshi M. 1995. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell, 7: 173–182

    Article  PubMed  CAS  Google Scholar 

  • Ohta M, Ohme-Takagi M, Shinshi H. 2000. Three ethylene-responsive transcription factors in tobacco with distinct trans-activation functions. Plant J., 22: 29–38

    Article  PubMed  CAS  Google Scholar 

  • Park C J, Shin Y C, Lee B J, Kim K J, Kim J K, Paek K H. 2006. A hot pepper gene encoding WRKY transcription factor is induced during hypersensitive response to Tobacco mosaic virus and Xanthomonas campestris. Planta, 223(2): 168–179

    Article  PubMed  CAS  Google Scholar 

  • Park H C, Kim M L, Kang Y H, Jeon J M, Yoo J H, Kim M C, Park C Y, Jeong J C, Moon B C, Lee J H, Yoon H W, Lee S H, Chung W S, Lim C O, Lee S Y, Hong J C, Cho M J. 2004. Pathogen-and NaCl-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor. Plant Physiol., 135(4): 2,150–2,161

    Article  CAS  Google Scholar 

  • Pasquali G, Erven A S W, Ouwerkerk P B F, Menke F L H, Memelink J. 1999. The promoter of the strictosidine synthase gene from periwinkle confers elicitor-inducible expression in transgenic tobacco and binds nuclear factors GT-1 and GBF. Plant Mol. Biol., 39: 1,299–1,310

    Article  CAS  Google Scholar 

  • Plesse B, Criqui M C, Durr A, Parmentier Y, Fleck J, Genschik P. 2001. Effects of the polyubiquitin gene Ubi.U4 leader intron and first ubiquitin monomer on reporter gene expression in Nicotiana tabacum. Plant Mol. Biol., 45: 655–667

    Article  PubMed  CAS  Google Scholar 

  • Qian W Q, Tan G H, Liu H X, He S P, Gao Y, An C C. 2007. Identification of a bHLH-type G-box binding factor and its regulation activity with G-box and Box I elements of the PsCHS1 promoter. Plant Cell Rep., 2007, 26: 85–93

    Article  PubMed  CAS  Google Scholar 

  • Rocher A, Dumas C, Cock J M. 2005. A W-box is required for full expression of the SA-responsive gene SFR2. Gene., 344: 181–192

    Article  PubMed  CAS  Google Scholar 

  • Rose A B, Beliakoff J A. 2000. Intron-mediated enhancement of gene expression independent of unique intron sequences and splicing. Plant Physiol., 122: 535–542

    Article  PubMed  CAS  Google Scholar 

  • Rushton P J, Reinstadler A, Lipka V, Lippok B, Somssich I E. 2002. Synthetic plant promoters containing defined regulatory elements provide novel insights into pathogen-and wound-induced signaling. Plant Cell., 14 (4): 749–762

    Article  PubMed  CAS  Google Scholar 

  • Rushton P J, Torres J T, Parniske M, Wernert P, Hahlbrock K, Somssich I E. 1996. Interaction of elicitor-induced DNA-binding proteins with elicitor response elements in the promoters of parsley PR1 genes. EMBO J., 15(20): 5,690–5,700

    CAS  Google Scholar 

  • Ryu H S, Han M, Lee S K, Cho J I, Ryoo N, Heu S, Lee Y H, Bhoo S H, Wang G L, Hahn T R, Jeon J S. 2006. A comprehensive expression analysis of the WRKY gene superfamily in rice plants during defense response. Plant Cell Rep., 25(8): 836–847

    Article  PubMed  CAS  Google Scholar 

  • Schindler U, Cashmore A R. 1990. Photoregulated gene expression may involve ubiquitous DNA binding proteins. EMBO J., 9(11): 3,415–3,427

    CAS  Google Scholar 

  • Shahmuradov A, Solovyev V V, Gammerman A J. 2005. Plant promoter prediction with confidence estimation. Nucleic Acids Res., 33(3): 1,069–1,076

    Article  CAS  Google Scholar 

  • Shen Q, Zhang P, Ho T D. 1996. Modular nature of abscisci acid (ABA) response complexes: composite promoter units that are necessary and sufficient for ABA induction of gene expression in barley. Plant Cell, 8: 1,107–1,119

    Article  CAS  Google Scholar 

  • Sims J E, March C J, Cosman D, Widmer M B, MacDonald H R, McMahan C J, Grubin C E, Wignall J M, Jackson J L, Call S M. 1988. cDNA expression cloning of the IL-1 receptor, a member of the immunoglobulin superfamily. Science, 241(4,865): 585–589

    Article  PubMed  CAS  Google Scholar 

  • Sivamani E, Qu R. 2006. Expression enhancement of a rice polyubiquitin gene promoter. Plant Mol. Biol., 60(2): 225–239

    Article  PubMed  CAS  Google Scholar 

  • Song F, Goodman R M. 2002. Cloning and identification of the promoter of the tobacco Sar8.2b gene, a gene involved in systemic acquired resistance. Gene, 290: 115–124

    Article  PubMed  CAS  Google Scholar 

  • Straub P F, Shen Q, Ho T D. 1994. Structure and promoter analysis of an ABA-and stress-regulated barley gene, HVA1. Plant Mol. Biol., 26: 617–630

    Article  PubMed  CAS  Google Scholar 

  • Sutliff T D, Lanahan M B, David Ho T H. 1993. Gibberellin treatment stimulates nuclear factor binding to the gibberellin response complex in barley α-amylase promoter. Plant Cell, 5: 1,681–1,692

    Article  CAS  Google Scholar 

  • Takeda K, Akira S. 2003. Toll receptors and pathogen resistance. Cell Microbiol., 5(3): 143–153

    Article  PubMed  CAS  Google Scholar 

  • Terzaghi W B, Cashmore A R. 1995. Light-regulated transcription. Ann. Rev. Plant Physiol. Plant Mol. Biol., 46: 445–474

    Article  CAS  Google Scholar 

  • Tjaden G and Coruzzi G M. 1994. A novel AT-rich DNA binding protein that combines an HMG I-like DNA binding domain with a putative transcription domain. Plant Cell, 6(1): 107–118

    Article  PubMed  CAS  Google Scholar 

  • Tran L S P, Nakashima K, Sakumna Y, Osakabe Y, Qin F, Simpson S D, Maruyama K, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K. 2007. Co-expression of the stress-inducible zinc finger homeodomain ZFHD1 and NAC transcription factors enhances expression of the ERD1 gene in Arabidopsis. Plant J., 49: 46–63

    Article  PubMed  CAS  Google Scholar 

  • Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K. 2000. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc. Natl. Acad. Sci. USA, 97(21): 11,632–11,637

    Article  CAS  Google Scholar 

  • Vasil V, Clancy M, Ferl R J, Vasil I K, Hannah C. 1990. Increased gene expression by the first intron of maize shrunken-1 locus in grass species. Plant Physiol., 91: 1,575–1,579

    Google Scholar 

  • Vasil V, Marcotte W R J, Rosenkrans L, Cocciolone S M, Vasil I K, Quatrano R S, McCarty D R. 1995. Overlap of Viviparous1 (VP1) and abscisic acid response elements in the Em promoter: G-box elements are sufficient but not necessary for VP1 transactivation. Plant Cell, 7(9): 1,511–1,518

    Article  CAS  Google Scholar 

  • Vaucheret H, Beclin C, Elmayan T, Feuerbach F, Godon C, Morel J B, Mourrain P, Palauqui J C, Vernhettes S. 1998. Transgene-induced gene silencing in plants. Plant J., 16(6): 651–659

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Wang J W, Yu N, Li C H, Gou J Y, Wang L J, Chen X Y. 2004. Control of plant trichome developmebt by a cotton fibre MYB gene. Plant Cell, 16: 2,323–2,334

    CAS  Google Scholar 

  • Wang X L, Feng Y P, Pan L N, Wang Y L, Xu X, Lu J, Huang B Q. 2007. The proximal GC-rich region of p16INK4a gene promoter plays a role in its transcription regulation. Mol. Cell Biochem., (in press)

  • Xu B, Timko M. 2004. Methyl jasmonate induced expression of the tobacco putrescine N-methyltransferase genes requires both G-box and GCC-motif elements. Plant Mol. Biol., 55(5): 743–761

    Article  PubMed  CAS  Google Scholar 

  • Xue G P. 2003. The DNA-binding activity of an AP2 transcriptional activator HvCBF2 involved in regulation of low-temperature responsive genes in barley is modulated by temperature. Plant J., 33(2): 373–383

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K. 1994. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell., 6: 251–264

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K. 2005. Organization of cis-acting regulatory elements in osmotic-and cold-stress-responsive promoters. Trends Plant Sci., 10(2): 88–94

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto S, Nakano T, Suzuki K, Shinshi H. 2004. Elicitor-induced activation of transcription via W box-related cis-acting elements from a basic chitinase gene by WRKY transcription factors in tobacco. Biochem. Biophys. Acta, 1,679(3): 279–287

    PubMed  CAS  Google Scholar 

  • Zhang Q, Zhang Z Y, Lin S Z, Zheng H Q, Lin Y Z, An X M. 2006. A family of NBS-LRR type of sequences from triploid poplar includes genes putatively involved in resistance leaf rust. Fourth International Poplar Symposium. Nanjing, China

  • Zhang Y, Dorey S, Swiderski M, Jones J D. 2004. Expression of RPS4 in tobacco induces an AvrRps4-independent HR that requires EDS1, SGT1 and HSP90. Plant J., 40(2): 213–224

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Wang L. 2005. The WRKY transcription factor superfamily: its origin in eukaryotes and expression in plants. BMC Evol. Biol., 5: 1–12

    Article  PubMed  CAS  Google Scholar 

  • Zheng Z, Mosher S L, Fan B, Klessig D F, Chen Z. 2007. Functional analysis of Arabidopsis WRKY25 transcription factor in plant defense against Pseudomonas syringae. BMC Plant Biol., 7: 2

    Article  PubMed  CAS  Google Scholar 

  • Zhou D X. 1999. Regulatory mechanism of plant gene transcription by GT-elements and GT-factors. Trends Plant Sci., 4: 210–214

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Shan-zhi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, Hq., Lin, Sz., Zhang, Q. et al. Isolation and analysis of a TIR-specific promoter from poplar. For. Stud. China 9, 95–106 (2007). https://doi.org/10.1007/s11632-007-0015-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11632-007-0015-1

Key words

Navigation