Skip to main content
Log in

Patterns of synonymous codon usage bias in chloroplast genomes of seed plants

  • Research Article
  • Published:
Forestry Studies in China

Abstract

Codon usage in chloroplast genome of six seed plants (Arabidopsis thaliana, Populus alba, Zea mays, Triticum aestivum, Pinus koraiensis and Cycas taitungensis) was analyzed to find general patterns of codon usage in chloroplast genomes of seed plants. The results show that chloroplast genomes of the six seed plants had similar codon usage patterns, with a strong bias towards a high representation of NNA and NNT codons. In chloroplast genomes of the six seed plants, the effective number of codons (ENC) for most genes was similar to that of the expected ENC based on the GC content at the third codon position, but several genes with low ENC values were laying below the expected curve. All of these data indicate that codon usage was dominated by a mutational bias in chloroplast genomes of seed plants and that selection appeared to be limited to a subset of genes and to only subtly affect codon usage. Meantime, four, six, eight, nine, ten and 12 codons were defined as the optimal codons in chloroplast genomes of the six seed plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akashi H. 2001. Gene expression and molecular evolution. Curr. Opin Genet Dev, 11: 660–666

    Article  PubMed  CAS  Google Scholar 

  • Bernardi G, Bernardi G. 1986. Compositional constraints and genome evolution. J Mol Evol, 24: 1–11

    Article  PubMed  CAS  Google Scholar 

  • Bernardi G. 1993. The vertebrate genome-isochores and evolution. Mol Biol Evol, 10: 186–204

    PubMed  CAS  Google Scholar 

  • Campell W H, Gowri G. 1990. Codon usage in higher plants, green algae, and cyanobacteria. Plant Physiol, 92(1): 1–11

    Article  Google Scholar 

  • Duret L. 2002. Evolution of synonymous codon usage in metazoans. Curr Opin Genet Dev, 12: 640–649

    Article  PubMed  CAS  Google Scholar 

  • Grantham R, Gautier C, Gouy M. 1980a. Codon frequencies in 119 individual genes confirm consistent choices of degenerate bases according to genome type. Nucleic Acids Res, 8(9): 1893–1912

    Article  PubMed  CAS  Google Scholar 

  • Grantham R, Gautier C, Gouy M, Mercier R, Pave A, 1980b. Codon catalogue usage and the genome hypothesis. Nucleic Acids Res, 8(1): 49–62.

    Article  Google Scholar 

  • Greenacre M J. 1984. Theory and Applications of Correspondence Analysis. London: Academic Press

    Google Scholar 

  • Ikemura T. 1985. Codon usage and tRNA content in unicellular and multicellular organisms. Mol Biol Evol, 2: 13–34

    PubMed  CAS  Google Scholar 

  • Kawaba A, Miyashita N T. 2003. Patterns of codon usage bias in three dicot and four monocot plant species. Genes Genet Syst, 78(5): 343–352

    Article  Google Scholar 

  • Liu Q, Feng Y, Xue Q. 2004. Analysis of factors shaping codon usage in the mitochondrion genome of Oryza sativa. Mitochondrion, 4: 313–320

    Article  PubMed  CAS  Google Scholar 

  • Lockhart P J, Penny D, Hendy M D, Howe C J, Beanland T J, Larkum A W D. 1992. Controversy on chloroplast origins. FEBS Lett, 301: 127–131

    Article  PubMed  CAS  Google Scholar 

  • Morton B R. 1993. Chloroplast DNA codon use: evidence for selection at the psbA locus based on tRNA availability. J Mol Evol, 37: 273–280

    Article  PubMed  CAS  Google Scholar 

  • Morton B R, Levin J A. 1997. The atypical codon usage of the psbA gene may be the remnant of an ancestral bias. Proc Natl Acad Sci USA, 94: 11434–11438

    Article  PubMed  CAS  Google Scholar 

  • Morton B R. 1998. Selection on the codon bias of chloroplast and cyanelle genes in different plant and algal lineages. J Mol Evol, 46: 449–459

    Article  PubMed  CAS  Google Scholar 

  • Morton B R. 1999. Strand asymmetry and codon usage bias in the chloroplast genome of Euglena gracilis. Proc Natl Acad Sci USA, 96: 5123–5128

    Article  PubMed  CAS  Google Scholar 

  • Morton B R, So B G. 2000. Codon usage in plastid genes is correlated with context, position within the gene, and amino acid content. J Mol Evol, 50: 184–193

    PubMed  CAS  Google Scholar 

  • Nussinov R. 1984. Strong doublet preferences in nucleotide sequences and DNA geometry. J Mol Evol, 20: 111–119

    Article  PubMed  CAS  Google Scholar 

  • Peden J F. 1999. Analysis of codon usage. Ph. D. Thesis. Nottingham: University of Nottingham

    Google Scholar 

  • Perriere G, Thioulouse J, 2002. Use and misuse of correspondence analysis in codon usgae studies. Nucleic Acids Res, 30:4548–4555

    Article  PubMed  CAS  Google Scholar 

  • Sharp P M, Tuohy T M F, Mosurski K R. 1986. Codon usage in yeast cluster-analysis clearly differentiates highly and lowly expressed genes. Nucleic Acids Res, 14: 5125–5143

    Article  PubMed  CAS  Google Scholar 

  • Sharp P M, Cowe E, Higgins D G, Shields D C, Wolfe K H, Wright F. 1988. Codon usage in Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Drosophila melanogaster and Homo sapiens: a review of the considerable within-species diversity. Nucleic Acids Res, 16: 8207–8711

    Article  PubMed  CAS  Google Scholar 

  • Sharp P M, Devine K M. 1989. Codon usage and gene-expression level in Dictyostelium discoideum-highly expressed genes do prefer optimal codons. Nucleic Acids Res, 17: 5029–5039

    Article  PubMed  CAS  Google Scholar 

  • Shields D C, Sharp P M. 1987. Synonymous codon usage in Bacillus subtilis reflects both translational selection and mutational biases. Nucleic Acids Res, 15: 8023–8040

    Article  PubMed  CAS  Google Scholar 

  • Stenico M, Lloyd A T, Sharp P M. 1994. Codon usage in Caenorhabditis elegans: delineation of translational selection and mutational biases. Nucleic Acids Res, 22(13):2437–2446

    Article  PubMed  CAS  Google Scholar 

  • Sueoka N. 1999. Translation-coupled violation of Parity Rule 2 in human genes is not the case of heterogeneity of the DNA G+C content of third codon position. Gene, 238: 53–58

    Article  PubMed  CAS  Google Scholar 

  • Sueoka N. 1988. Directional mutational pressure and neutral pressure. Proc Natl Acad Sci USA, 85: 2653–2657

    Article  PubMed  CAS  Google Scholar 

  • Sueoka N. 1962. On the genetic basis of variation and heterogeneity of DNA base composition. Proc Natl Acad Sci USA, 48: 582–592

    Article  PubMed  CAS  Google Scholar 

  • Wolfe K H, Sharp P M. 1988. Identification of functional open reading frames in chloroplast genomes. Gene, 66: 215–222

    Article  PubMed  CAS  Google Scholar 

  • Wolfe K H, Sharp P M, Li W H. 1989. Mutation-rates differ among regions of the mammalian genome. Nature, 337:283–285

    Article  PubMed  CAS  Google Scholar 

  • Wolfe K H, Morden C W, Ems S C, Palmer J D. 1992. Rapid evolution of the plastid translational apparatus in a nonphotosynthetic plant: loss or accelerated sequence evolution of tRNA and ribosomal protein genes. J Mol Evol, 35: 304–317

    Article  PubMed  CAS  Google Scholar 

  • Wright F. 1990. The ‘effective number of codons’ used in a gene. Gene, 87(1): 23–29

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, M., Long, W. & Li, X. Patterns of synonymous codon usage bias in chloroplast genomes of seed plants. For. Stud. China 10, 235–242 (2008). https://doi.org/10.1007/s11632-008-0047-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11632-008-0047-1

Key words

Navigation