Skip to main content

Advertisement

Log in

Design and fabrication of W-Mo-Ti-TiAl-Al system functionally graded material

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

To obtain a kind of functionally graded material (FGM) with a density gradient, the W-Mo-Ti-TiAl-Al system graded material was designed, and the powder metallurgy method was chosen for its fabrication. The sintering of W, W-Mo, and Mo-Ti alloys at low temperature was studied, and then the approximately wholly dense W-Mo-Ti-TiAl system FGM was achieved by one-step sintering at 1473 K for 1 hour under a pressure of 30 MPa. It was found that through sintering at 1473 K, mainly the mechanical mixtures of W and Mo were formed in W-Mo alloys. In Mo-Ti alloys, the newly designed Fe-Al sintering aids not only have an important effect on the densification of the alloys, but also contribute to the formation of the (Mo, Ti) solid solution. However, the solid-solution reaction that occurred in Mo-Ti alloys was still insufficient. During the sintering of Ti + TiAl, the chemical reaction of Ti + TiAl → AlTi2 was induced within the sintered body. The W-Mo-Ti-TiAl-Al system FGM was finally fabricated by joining of the TiAl side of the sintered W-Mo-Ti-TiAl system FGM to metal Al with an Al-based brazing filler metal, and its density changed quasi-continuously within the large range from 17.15 to 2.70 g/cm3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.M. Barker: Shock Waves Condensed Matter, 1983, p. 219.

  2. L.C. Chhabildas and L.M. Barker: Shock Waves Condensed Matter, 1987, p. 111.

  3. F.Q. Jing: Physics, 1986, vol. 15(5), p. 305 (in Chinese).

    Google Scholar 

  4. L.C. Chhabildas and J.R. Asay: SAND88-0306C, 1988.

  5. L.C. Chhabildas, J.R. Asay, and L.M. Barker: SAND89-0975C, 1989.

  6. L.C. Chhabildas and J.R. Asay: SAND86-1888, 1986.

  7. L.C. Chhabildas, L.N. Kmetyk, W.D. Reinhart, and C.A. Hall: Int. J. Impact Eng., 1995, vol. 17, pp. 183–94.

    Article  Google Scholar 

  8. L.M. Barker and D.D. Scott: SAND 84-0432, 1984.

  9. R. Tu, Q. Shen, J.S. Hua, L.M. Zhang, and R.Z. Yuan: in Functionally Graded Materials 1996, Proc. 4th Int. Symp. FGMs, Ichiro Shiota and Yoshinari Miyamoto, eds., Elsevier, AIST Tsukuba Research Center, Tsukuba, Japan, 1996, pp. 307–11.

    Google Scholar 

  10. Daisuke Miyake, Hidekazu Tomaru, Satoshi Takagi, Akira Kawasaki, and Ryuzo Watanabe: J. Jpn. Soc. Powder Powder Metall., 1995, vol. 42, pp. 1367–71 (in Japanese).

    CAS  Google Scholar 

  11. L.M. Zhang, R.Z. Yuan, M. Oomori, and T. Hirai: J. Mater. Sci. Lett., 1995, vol. 14, pp. 1620–23.

    Article  CAS  Google Scholar 

  12. Jeong-Gu Yeo, Yeon-Gil Jung, and Sung-Churl Choi: Mater. Lett., 1998, vol. 37, pp. 304–07.

    Article  CAS  Google Scholar 

  13. M. Omori, H. Sakai, A. Okubo, and T. Hirai: in Functionally Graded Materials 1996, Proc. 4th Int. Symp. FGMs, Ichiro Shiota and Yoshinari Miyamoto, eds., Elsevier, AIST Tsukuba Research Center, Tsukuba, Japan, 1996, pp. 667–71.

    Google Scholar 

  14. Anish Upadhyaya and R.M. German: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2631–38.

    CAS  Google Scholar 

  15. D.K. Bose and R.M. German: Metall. Trans. A, 1988, vol. 19A, pp. 2467–76.

    CAS  Google Scholar 

  16. J-K. Park, S-J.L. Kang, K.Y. Eun, and D.N. Yoon: Metall. Trans. A, 1989, vol. 20A, pp. 837–45.

    CAS  Google Scholar 

  17. T. Kaneko: J. Jpn. Soc. Powder Powder Metall., 1991, vol. 38, pp. 864–71 (in Japanese).

    CAS  Google Scholar 

  18. C. Lea, B.C. Muddle, and D.V. Edmonds: Metall. Trans. A, 1983, vol. 14A, pp. 667–77.

    Google Scholar 

  19. B.H. Rabin and R.M. German: Metall. Trans. A, 1988, vol. 19A, pp. 1523–32.

    CAS  Google Scholar 

  20. T. Sakamoto: J. Jpn. Soc. Powder Powder Metall., 1990, vol. 37, pp. 878–84 (in Japanese).

    CAS  Google Scholar 

  21. T. Sakamoto: J. Jpn. Soc. Powder Powder Metall., 1991, vol. 38, pp. 839–43 (in Japanese).

    CAS  Google Scholar 

  22. J. Park, M.W. Toaz, D.H. Ro, and E.N. Aqua: Proc. Symp. Sponsored by the Nonferrous Metals Committee of the Metallurgical Society of AIME Held at the Annual Meetings of the Metallurgical Society in Los Angeles, CA, Feb. 26–Mar. 1, 1984, Los Angeles, CA, Titanium Net Shape Technologies, F.H. Froes and D. Eylon, Metallurgical Society of AIME, Los Angeles, CA, 1984, pp. 95–106.

    Google Scholar 

  23. S. Mizunuma, Toshimasa Tomokiyo, and Toshitaro Mimaki: J. Jpn. Soc. Powder Powder Metall., 1996, vol. 43, pp. 918–23 (in Japanese).

    CAS  Google Scholar 

  24. Katsuhisa Uamauchi, Park Yong, Hitoshi Hasimoto, and Ryuzo Watanabe: J. Jpn. Soc. Powder Powder Metall., 1991, vol. 38, pp. 42–46 (in Japanese).

    Google Scholar 

  25. Kohei Taguchi, Michihiko Ayada, and Hideo Shingu: J. Jpn. Soc. Powder Powder Metall., 1993, vol. 40, pp. 501–05 (in Japanese).

    CAS  Google Scholar 

  26. Yuji Muramatsu, Tsuneo Ohkoshi, and Hiroo Suga: J. Jpn. Soc. Powder Powder Metall., 1995, vol. 42, pp. 611–17 (in Japanese).

    CAS  Google Scholar 

  27. H.P. Xiong, L.M. Zhang, Q. Shen, and R.Z. Yuan: J. Mater. Sci. Technol., 1999, vol. 15, pp. 94–96.

    CAS  Google Scholar 

  28. H.P. Xiong, L.M. Zhang, J.G. Li, H. Tao, and R.Z. Yuan: Mater. Sci. Forum, 1999, vols. 308–311, pp. 628–33.

    Article  Google Scholar 

  29. C. Agte and J. Vacek: Tungsten and Molybdenum, NASA Trans., 1963, vol. F-135, pp. 198–201.

    Google Scholar 

  30. H. Kyogoku and K. Shinohara: Powder Metallurgy World Congress (PM ’94), Paris, France, Editions de Physique, Les Ulis, France, 1994, vol. 2, pp. 1177–80.

    Google Scholar 

  31. G.L. Chen, Y.D. Wang, and D.Q. Zhu: Chin. J. Nonferrous Met., 1996, vol. 6, pp. 49–60 (in Chinese).

    CAS  Google Scholar 

  32. T. Hanamura, R. Ueonori, and M. Tanino: J. Mater. Res., 1988, vol. 3, pp. 656–70.

    CAS  Google Scholar 

  33. T. Hanamura and M. Tanino: J. Mater. Sci. Lett., 1989, vol. 8, pp. 24–26.

    Article  CAS  Google Scholar 

  34. M.G. Nicholas: in Joining of Ceramics, M.G. Nicholas, ed., Chapman & Hall, London, 1990, pp. 1–2.

    Google Scholar 

  35. D.W. Mckee and K.L. Luthra: Surf. Coating Technol., 1993, vol. 56, pp. 109–12.

    Article  CAS  Google Scholar 

  36. Z.L. Tang and F.H. Wang: Chin. J. Nonferrous Met., 1998, vol. 8, pp. 56–60 (in Chinese).

    CAS  Google Scholar 

  37. N. Masahashi: Iron Steel Inst. Jpn. Int., 1991, vol. 31, pp. 728–734.

    CAS  Google Scholar 

  38. G.E. Fuchs: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 2543–53.

    Article  CAS  Google Scholar 

  39. D. Hu, A. Godfrey, P.A. Blenkinsop, and M.H. Loretto: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 919–25.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiong, H., Zhang, L., Chen, L. et al. Design and fabrication of W-Mo-Ti-TiAl-Al system functionally graded material. Metall Mater Trans A 31, 2369–2376 (2000). https://doi.org/10.1007/s11661-000-0152-9

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-000-0152-9

Keywords

Navigation