Skip to main content
Log in

Near-threshold fatigue crack growth behavior of 2195 aluminum-lithium-alloy—prediction of crack propagation direction and influence of stress ratio

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Tensile properties and fatigue crack propagation behavior of a 2195-T8 Al-Li alloy were investigated at different stress ratios, with particular emphasis on their dependence on specimen orientation. Specimens with orientations of 0, 15, 30, 45, and 90 deg to the rolling direction were tested. The alloy contained a strong brass-type texture and a profuse distribution of platelike precipitates of T 1 (Al2CuLi) phase on {111} matrix planes. Both tensile strength and fatigue thresholds were found to be strongly dependent on the specimen orientation, with the lowest values observed along the direction at 45 deg to the rolling direction. The effect of stress ratio on fatigue threshold could generally be explained by a modified crack closure concept. The growth of fatigue crack in this alloy was found to exhibit a significant crystallographic cracking and especially macroscopic crack deflection. The specimens oriented in the L-T + 45 deg had the smallest deflection angle, while the specimens in the L-T and T-L orientations exhibited a large deflection angle. The dependence of the fatigue threshold on the specimen orientation could be rationalized by considering an equivalent fatigue threshold calculated from both mode I and mode II values due to the crack deflection. A four-step approach on the basis of Schmid’s law combined with specific crystallographic textures is proposed to predict the fatigue crack deflection angle. Good agreement between the theoretical prediction and experimental results was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.W. Gayle, W.T. Tack, G. Swanson, F.H. Heubaum, and J.R. Pickens: Scripta Metall. Mater., 1994, vol. 30, pp. 761–66.

    Article  CAS  Google Scholar 

  2. D. Furrer and R. Noel: Adv. Mater. Processes, 1997, vol. 5, pp. 59–60.

    Google Scholar 

  3. B.P. Huang and Z.Q. Zheng: Scripta Mater., 1998, vol. 38, pp. 357–62.

    Article  CAS  Google Scholar 

  4. B.P. Huang, Z.Q. Zheng, D.F. Yin, and Z.M. Mo: Mater. Sci. Forum, 1996, vols. 217–222, pp. 1239–44.

    Google Scholar 

  5. P.S. Chen, A.K. Kuruvilla, T.W. Malone, and W.P. Stanton: JMEPEG, 1998, vol. 7, pp. 682–90.

    CAS  Google Scholar 

  6. R. Crooks, Z. Wang, V.I. Levit, and R.N. Shenoy: Mater. Sci. Eng. A, 1998, vol. A257, pp. 145–52.

    CAS  Google Scholar 

  7. S.J. Hales and R.A. Hafley: Mater. Sci. Eng. A, 1998, vol. A257, pp. 153–64.

    CAS  Google Scholar 

  8. P.N. Kalu and L. Zhang: Scripta Mater., 1998, vol. 39, pp. 175–80.

    Article  CAS  Google Scholar 

  9. K.H. Hou and W.A. Baeslack III: J. Mater. Sci. Lett., 1996, vol. 15, pp. 239–44.

    Article  CAS  Google Scholar 

  10. K.H. Hou and W.A. Baeslack III: J. Mater. Sci. Lett., 1996, vol. 15, pp. 208–13.

    Article  CAS  Google Scholar 

  11. J.C. Lippold and W. Lin: Mater. Sci. Forum, 1996, vols. 217–222, pp. 1685–90.

    Google Scholar 

  12. J.F. Sanders: Thin Solid Films, 1996, vol. 277, pp. 121–27.

    Article  CAS  Google Scholar 

  13. P. Chien: Weld. J., 1998, vol. 77, pp. 45–47.

    Google Scholar 

  14. C.P. Blankenship, Jr. and E.A. Starke, Jr.: Fatigue Fract. Eng. Mater. Struct., 1991, vol. 14, pp. 103–14.

    Article  Google Scholar 

  15. D.C. Slavik, C.P. Blankenship, Jr., E.A. Starke, Jr., and R.P. Gangloft: Metall. Trans. A, 1993, vol. 24A, pp. 1807–17.

    CAS  Google Scholar 

  16. C.P. Blankenship, Jr. and E.A. Starke, Jr.: Acta Metall. Mater., 1994, vol. 42, pp. 845–55.

    Article  CAS  Google Scholar 

  17. D.L. Chen, M.C. Chaturvedi, N. Goel, and N.L. Richards: Int. J. Fatigue, 1999, vol. 21, pp. 1079–86.

    Article  CAS  Google Scholar 

  18. K.T. Venkateswara Rao and R.O. Ritchie: Int. Mater. Rev., 1992, vol. 37, pp. 153–85.

    Google Scholar 

  19. I.M. Robertson: Mater. Forum, 1991, vol. 15, pp. 102–11.

    CAS  Google Scholar 

  20. V.B. Dutta, S. Suresh, and R.O. Ritchie: Metall. Trans. A, 1984, vol. 15A, pp. 1193–1207.

    CAS  Google Scholar 

  21. D.L. Chen, B. Weiss, and R. Stickler: Int. J. Fatigue, 1994, vol. 16, pp. 488–91.

    Google Scholar 

  22. I.G. Palmer, W.S. Miller, D.J. Lloyd, and M.J. Bull: in Aluminum-Lithium Alloys III, C. Baker, P.J. Gregson, S.J. Harris, and C.J. Peel, eds., The Institute of Metals, London, 1986, pp. 565–75.

    Google Scholar 

  23. M. Peters, K. Welpmann, and T.H. Sanders, Jr.: MRS-Europe, 7th Symp., Advanced Materials Research and Developments for Transport: Light Metals 1985, R.J.H. Wanhill, W.J.G. Bunk, and J.G. Wurm, eds., Les Editions de Physique, Les Ulis Cedex, France, 1985, vol. VII, pp. 63–70.

    Google Scholar 

  24. Z.X. Li and R. Mirshams: Mater. Sci. Forum, 1996, vols. 217–222, pp. 1233–38.

    Article  Google Scholar 

  25. G.I. Taylor: J. Inst. Met., 1938, vol. 62, pp. 307–24.

    Google Scholar 

  26. J.F.W. Bishop and R. Hill: Phil. Mag., 1951, vol. 42, pp. 414–27 and 1298–1307.

    CAS  Google Scholar 

  27. W.G. Fricke, Jr. and M.A. Frzystupa: in Aluminum Alloys—Contemporary Research and Applications, A.K. Vasudevan and R.D. Doherty, eds., Academic Press, Inc., Boston, MA, 1989, pp. 563–78.

    Google Scholar 

  28. I. Sinclair and P.J. Gregson: Scripta Metall. Mater., 1994, vol. 30, pp. 1287–92.

    Article  CAS  Google Scholar 

  29. B. Cotterell and J.R. Rice: Int. J. Fract., 1980, vol. 16, pp. 155–69.

    Article  Google Scholar 

  30. S. Suresh and C.F. Shih: Int. J. Fract., 1986, vol. 30, pp. 237–59.

    Article  Google Scholar 

  31. A.K. Vasudevan and S. Suresh: Mater. Sci. Eng., 1985, vol. 72, pp. 37–49.

    Article  CAS  Google Scholar 

  32. K.T. Venkateswara Rao and R.O. Ritchie: Mater. Sci. Technol., 1989, vol. 5, pp. 882–907.

    Google Scholar 

  33. Y.B. Xu, L. Wang, Y. Zhang, Z.G. Wang, and Z.Q. Hu: Metall. Trans. A, 1991, vol. 22A, pp. 723–29.

    CAS  Google Scholar 

  34. X.J. Wu, W. Wallace, M.D. Raizenne, and A.K. Koul: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 575–88.

    CAS  Google Scholar 

  35. G.O. Rading and J.T. Berry: Mater. Sci. Eng. A, 1996, vol. A219, pp. 192–201.

    CAS  Google Scholar 

  36. R.W.K. Honeycombe: The Plastic Deformation of Metals, Edward Arnold (Publishers) Ltd., London, 1968, pp. 17–20.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, D.L., Chaturvedi, M.C. Near-threshold fatigue crack growth behavior of 2195 aluminum-lithium-alloy—prediction of crack propagation direction and influence of stress ratio. Metall Mater Trans A 31, 1531–1541 (2000). https://doi.org/10.1007/s11661-000-0164-5

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-000-0164-5

Keywords

Navigation